首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
采用脉冲微反装置评价了纯正丁烷(原料I)、含有少量异丁烷的混合丁烷(原料Ⅱ)和富含异丁烷的混合丁烷(原料Ⅲ)在锌改性的纳米HZSM-5催化剂上的反应性能.通过红外吸附正丁烷羟基谱图,研究了Zn/HZSM-5催化剂的活性中心.结果表明,反应温度为550℃时,两种混合丁烷在催化剂上的转化率和芳构化选择性都远高于纯正丁烷.即异丁烷比例越高,反应效果越好,说明二者共存时,异丁烷在竞争反应中抑制了正丁烷的转化.另外,芳烃选择性均随Zn负载量的增加而增加.这是因为异丁烷在酸中心作用下脱氢生成叔碳正离子的能力高.而正丁烷的活化方式可能同时存在脱氢活化和脱甲基活化.因此,以工业碳四饱和烃为芳构化原料时,正丁烷和异丁烷可不必分离,直接以混合原料进行芳构化反应.  相似文献   

2.
以HZSM-5沸石分子筛为载体,尿素为沉淀剂,采用常压沉积-沉淀法和负压沉积-沉淀法制备了系列Au/HZSM-5沸石催化剂并采用常规催化剂表征方法对其进行了表征.用脉冲微反装置评价了纯正丁烷(99.9%)在氢型和金改性的纳米HZSM-5催化剂上的反应活性和烯烃选择性.结果表明,在550℃下,负压沉积-沉淀法制备的不同金负载量的纳米HZSM-5催化剂上的转化率和烯烃选择性都远高于常压沉积沉淀法制备的催化剂.改性量为2.0%的Au/HZSM-5-A(负压)催化剂正丁烷转化率达到了58.0%、烯烃选择性为57.2%.脱氢和脱甲基活化是正丁烷的重要活化方式,也是影响其烯烃选择性的主要因素.金改性在提高正丁烷转化率的同时,也促进了正丁烷的脱氢和脱甲基活化.纳米HZSM-5因晶粒度小,孔道短和微孔扩散阻力低而有利于正丁烷转化.负压有利于清除HZSM-5内部的无定型杂质和脱气净化处理,有利于金的负载量和分散度.  相似文献   

3.
采用脉冲微反装置评价了纯正丁烷、含有不同比例异丁烷的混合丁烷在Au改性的纳米HZSM-5催化剂上的反应活性和异构化选择性。结果表明,在300℃时,载金量为1.31%的催化剂上纯正丁烷原料的转化率可达7.0%,异丁烷选择性可达80%以上。相比之下,在纳米HZSM-5载体上正丁烷的转化率只有0.55%,异丁烷选择性仅为11.67%。在Au负载量为0.12%~1.91%,随着Au负载量的增加,正丁烷转化率先增后减,异丁烷选择性在低负载量时增加明显。在反应温度低于400℃时,纯正丁烷在载金催化剂上主要发生异构化反应;高于400℃时,主要发生裂解和芳构化等反应,即400℃是正丁烷在脉冲微反条件下异构化和裂解等反应的分水岭。另外,混合丁烷的组成对正丁烷异构化反应有一定影响,但在适当温度下正丁烷异构化时裂解产物很少,表现出金属-酸双功能催化特征。Au+在反应中发挥了脱氢和加氢作用。  相似文献   

4.
在小型常压固定床反应器中研究了不同离子浸渍改性对纳米ZSM-5固体酸催化剂上丁烷和丁烯转化的影响.结果表明,混和碳四中异丁烷比正丁烷易转化,丁烯异构体的转化与其在原料中的含量有关.在贫烯烃原料中,丁烯倾向于生成.在富丁烯原料中,丁烯倾向于转化.但在两种情况下,产物中各丁烯含量大体上按异丁烯、顺反-丁烯-2和丁烯-1顺序递减.采用锌离子改性时异丁烷转化率提高、正丁烷转化率降低.锌离子改性有利于芳烃选择性,但是副产物甲烷和乙烷的产率也较高;铁离子改性对丁烷和丁烯的转化影响不大,但能减少甲烷和乙烷的生成,并提高芳烃选择性;与锌改性相比,锌钠双离子改性降低了异丁烷、正丁烷和丁烯-1的转化率,减少了芳烃产率,但能明显促进丙烯和丁烯的生成.上述结果为碳四液化气综合利用提供了有益信息.  相似文献   

5.
纳米ZSM-5用于石脑油催化裂化的最新进展(英文)   总被引:3,自引:0,他引:3  
综述了纳米ZSM-5在石脑油催化裂解中的应用.比较了纳米ZSM-5和毫米级ZSM-5对产物选择性、反应转化率和催化剂寿命的影响.纳米ZSM-5的应用不仅延长了催化剂寿命,而且表现出更稳定的轻质烯烃选择性.讨论了反应条件,如温度和进料对纳米ZSM-5催化性能的影响,发现高温和线式烷烃作为进料时可提高轻质烯烃的选择性和反应转化率.  相似文献   

6.
采用沉积沉淀和浸渍法制备了Au-Zn组合改性HZSM-5催化剂.并且对比研究了HZSM-5,Au/HZSM-5,Zn/HZSM-5和Au-Zn/HZSM-5催化剂的性质和催化性能.采用UV-Vis和XPS表征揭示出Au-Zn/HZSM-5催化剂中Au物种与Zn物种的相互作用.正丁烷探针反应结果表明,在Zn/HZSM-5催化剂中引入Au有效地提高了正丁烷的脱氢芳构化性能,同时抑制了正丁烷在Zn活性中心上的氢解副反应.在相同条件下,与Zn/HZSM-5催化剂相比,正丁烷转化率由49.1%增加到70.8%,烯烃和芳烃产物总选择性由57%增加到61.98%,干气的选择性由31%降低至28.4%.上述结果表明,Au-Zn/HZSM-5催化剂在轻烃芳构化反应中具有良好的催化性能.  相似文献   

7.
纳米HZSM-5沸石的骨架热稳定性及其作为催化剂的可再生性   总被引:1,自引:0,他引:1  
采用高温焙烧和积炭失活-空气烧炭再生方法研究了纳米ZSM-5沸石的骨架热稳定性和用纳米HZSM-5沸石制成的芳构化催化剂的再生重复使用性能,还采用XRD、TG、FTIR、NH3-TPD和N2物理吸附,以及C4液化气固定床临氢芳构化反应对沸石和催化剂样品的物化性质作了表征.结果表明:纳米ZSM-5沸石具有良好的骨架热稳定性,在马弗炉的静止空气气氛中恒温焙烧800℃时仍可保持骨架结构.纳米HZSM-5型芳构化催化剂在C4液化气固定床临氢芳构化反应中不但活性稳定性好,而且可以再生重复使用,具有很高的工业应用价值.  相似文献   

8.
预处理条件对Mo/HZSM-5和Mo-Zn/HZSM-5甲烷芳构化性能的影响   总被引:2,自引:0,他引:2  
甲烷无氧芳构化 ,具有选择性高、技术简单及产物易分离等特点 ,已引起人们的广泛关注 [1,2 ] .Mo/HZSM- 5是芳构化的良好催化剂 ,为了探讨预处理条件对反应的影响 ,我们对不同预处理条件下的 Mo/HZSM- 5及 Zn改性的 Mo/HZSM- 5催化剂上的甲烷无氧芳构化反应进行了研究 ,并以热重法对催化剂的稳定性进行了表征 .1实验部分1 .1原料和试剂钼酸铵 ( A.R.级 ) ,乙酸锌 ( A.R.级 ) ,铵型ZSM- 5分子筛 (硅铝比为 5 0~ 70 ) .1 .2催化剂制备铵型 ZSM- 5分子筛于 81 3K、空气气氛下焙烧3h,即成 HZSM- 5分子筛 .以一定浓度的钼酸铵溶液…  相似文献   

9.
 考察了反应温度、空速、压力、临氢条件以及催化剂的水热处理条件对液化石油气在ZSM-5分子筛催化剂上低温芳构化制取高辛烷值汽油反应性能的影响. 结果表明,反应温度和空速对催化剂的催化性能有明显影响,提高反应温度有利于提高芳烃的选择性,同时芳烃中的苯、甲苯和C10+芳烃含量增加; 增大进料空速,催化剂的芳构化性能下降,芳烃中的重组分增加,二甲苯中对二甲苯含量增大. 催化剂的水热处理温度升高,其初始芳构化活性下降,而催化剂经过适当的水热处理和系统中氢气的存在均可提高催化剂催化芳构化反应的稳定性.  相似文献   

10.
汽油芳构化降烯烃ZSM-5型催化剂的研究   总被引:22,自引:0,他引:22  
通过催化剂表征和小型固定床反应发现,减小沸石晶粒度和提高沸石表面L酸B酸比值,或者适当采用高氢油比,可以提高ZSM-5沸石在汽油芳构化降烯烃反应中的活性稳定性.而适当提高反应温度及减小汽油进料空速则可以提高汽油中烯烃的芳构化程度.连续300h的小试运转表明,FCC和DCC汽油中的烯烃在一种晶粒度为20~50纳米的改性纳米ZSM-5沸石上可有效地转化为芳烃,降烯烃幅度达20个体积百分点以上,改质后汽油的辛烷值、组成和沸程等指标均满足新国标要求.  相似文献   

11.
采用负压沉积沉淀法制备了负载型Au/HZSM-5催化剂,采用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、NH3-TPD、紫外可见漫反射(UV-vis)等技术对催化剂进行了表征分析,并考察了催化剂对正丁烷裂解性能的影响。结果表明,Au金属成功负载到HZSM-5催化剂上,并且金颗粒的尺寸受负载量的影响,其中1.0%Au/HZSM-5催化剂中的金颗粒粒径最小,约为5~10nm。钾离子作为一种碱性离子可以调节载体酸性,随着K离子的引入xK-Au/HZSM-5催化剂的酸性逐渐降低,使Au0的电子结合能更高。相对于HZSM-5,2.0Au/HZSM-5催化剂对于正丁烷的转化率从13.1%提升到了37.5%,对丙烯的选择性从17.2%提升到了52.5%。随着K离子的引入,催化剂对于丁烯以及异丁烷的选择性有所提高,当K离子负荷为0.08%时,对丁烯的选择性从3.8%提高到36.9%,负荷为0.1%时,对异丁烷的选择性由2.8%提升到51.8%。但原料转化率低于2.0Au/HZSM-5,这可能与K的加入降低催化剂酸改性有关。此外通过研究Au/HZSM-5用K+修饰得知Au+离子是Au/HZSM-5催化剂转化正丁烷主要活性中心。  相似文献   

12.
研究了HZSM-5、ZnHZSM-5和ZnNaZSM-5上的羟基振动光谱和一氧化碳吸附的红外光谱,以及丙烷的芳构化反应.红外光谱中发现表征强B酸的3610cm-1羟基振动峰相对强度由于锌离子的引入和浸渍氢氧化钠而减小,说明了锌离子和钠离子均进入了分子筛的阳离子位;一氧化碳在锌离子上的吸附峰位在2232cm-1,说明进入阳离子位的锌离子是一种强L酸.反应结果表明,锌离子的引入大大地促进了丙烷的转化和芳烃选择性的提高;在一定范围内,随浸渍氢氧化钠量的增加,丙烷转化率下降,而丙烯的选择性和产率增加,说明了锌组份直接参与了丙烷的脱氢过程.Zn-L酸是丙烷活化脱氢的中心,丙烷在该中心上异裂活化直接脱氢.  相似文献   

13.
沸石载体结构对甲烷无氧芳构化性能的影响   总被引:7,自引:1,他引:6  
考察了担载MoO3的沸石催化剂上甲烷的无氧芳构化性能,并与沸石结构相关联.结果表明,孔径与苯分子动态直径相当的ZSM-5、ZSM-8、ZSM-11和β沸石等是甲烷无氧芳构化催化剂的良好载体,其中3%MoO3/HZSM-11具有最高的甲烷芳构化活性和稳定性,973K下的转化率和苯选择性分别为8.0%和90.9%;6%MoO3/HZSM-8与7%MoO3/H-β芳构化性能相当.以HMCM-41和HSAPO-34为载体时芳构化活性很低,以HMOR、HX和HY为载体时仅有少量乙烯生成,而以HSAPO-5和HSAPO-11为载体时未检测到烃类生成.  相似文献   

14.
ZnHZSM-5上丙烷芳构化的研究-丙烷的活化   总被引:5,自引:1,他引:5  
研究了HZSM-5、ZnHZSM-5和ZnNaZSM-5上的羟基振动光谱和一氧化碳吸附的红外光谱,以及丙烷的芳构化反应.红外光谱中发现表征强B酸的3610cm-1羟基振动峰相对强度由于锌离子的引入和浸渍氢氧化钠而减小,说明了锌离子和钠离子均进入了分子筛的阳离子位;一氧化碳在锌离子上的吸附峰位在2232cm-1,说明进入阳离子位的锌离子是一种强L酸.反应结果表明,锌离子的引入大大地促进了丙烷的转化和芳烃选择性的提高;在一定范围内,随浸渍氢氧化钠量的增加,丙烷转化率下降,而丙烯的选择性和产率增加,说明了锌组份直接参与了丙烷的脱氢过程.Zn-L酸是丙烷活化脱氢的中心,丙烷在该中心上异裂活化直接脱氢.  相似文献   

15.
The non-oxidative aromatization of mixed CH4 with C3H8 over La-promoted Zn/HZSM-5 catalysts was studied in a fixed-bed reactor at 823 K with space velocity 600 h-1 and CH4/C3H8 (mol ratio)=5:1. The propane conversion and the aromatic selectivities were up to 99% and 60% over the catalyst respectively, while methane conversion had an induction period with the highest conversion of 30%. The structure and surface acidity of the catalysts were characterized by XRD, NH3-TPD and TG-DTA. The influences of reaction and regenerative conditions on the activity and selectivity were also investigated.  相似文献   

16.
La/HZSM—5催化剂上丙烷的芳构化反应研究   总被引:5,自引:0,他引:5  
采用浸渍法和离子交换法制备了La/HZSM-5分子筛催化剂,用于丙烷芳构化反应,利用XRD,SPS,FT-IR,NH3-TPD技术考察了La对HZSM-5分子筛结构和表面酸性的影响,引入La后能显著提高HZSM-5的丙烷芳构化活性,其中由离子交换法得到的催化剂效果最佳,在反应温度550度,空速600h^-1条件下,丙烷转化率和芳烃选择性分别达到94.58%,68.99%,在La/HZSM-5中分子筛结晶度下降,B酸中心减少,L酸中心增多,离子交换法制备的催化剂比浸渍法催化剂的这种变化更显著,同时更有利于La3 进入分子筛孔道内,并与分子筛产生强相互作用,新增加的L酸中心可能是芳构化反应的活性中心。  相似文献   

17.
The activities of the cobalt and zinc-impregnated HZSM-5 catalysts to the non-oxidative conversion of propane (C3) and methane (C1) into aromatic hydrocarbons were evaluated using a fixed-bed microreactor. C1 conversion reached 36.7% and the selectivity of aromatic products reached above 88.7% at atmospheric pressure, weight (hourly) space velocity (WHSV) 1.6 g h−1/(g cat)−1 and 873 K. The influence of the acidity and the ratio of cobalt in the catalyst on the conversion of methane and propane was evaluated. C1 incorporation was conclusively confirmed by the mass spectral analyses of aromatic products produced in a run with 13CH4 which shows a significant 13C enrichment in the C6H6+, C7H8+ and C8H10+ fragments. The methane activation could result from its hydrogen-transfer reaction with alkenes. These catalysts were thoroughly characterized using XRD, N2 adsorption measurements, TPD of NH3, and FT-IR. The results showed that the activation of methane in low temperature was due to existence of propane. The acidic changes and micropore area of the catalyst severely affected aromatization, and resulted in drastic modifications in product distribution. From this work, we found that only a small fraction of tetrahedral framework aluminum, which corresponds to the Bronsted acid sites, is sufficient to accomplish the aromatization of the intermediates in methane and propane aromatic reaction, while the superfluous strong Bronsted acid sites, which can be decreased by adding Co and Zn, are showed to be related with the aromatic carbonaceous deposits on the catalysts. The density of acidic site and the strength of strong acid decreased when the concentration of Co and Zn in the catalyst increased. Therefore, a much higher benzene yield and a longer durability of the catalysts are obtained when compared with the conventional HZSM-5 catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号