首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Molecular imprinted solid-phase extraction (MISPE) is a well known technique for the selective extraction and pre-concentration of analytes, are present at low levels in chemically complex materials. Herein, water-soluble, molecularly imprinted polymers (MIP) were prepared for solid-phase extraction of pseudoephedrine hydrochloride (PSE), which was monitored at 256 nm by the UV spectroscopy. MISPE conditions were optimized to allow the selective and determination of PSE in aqueous samples and composite materials, such as biological fluids and human urine. MIP was prepared by precipitation polymerization method, using methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent in either acetonitrile or chloroform. The results suggest that the obtained MISPE exhibits high affinity for PSE, and the imprinted polymer demonstrates much higher efficiency than a non-imprinted polymer (NIP). The imprinting-induced extraction was confirmed by the determination of recovery values for NIP (4%) and MIP (80%) polymers, respectively. The binding capacity of the MIP for PSE was found of 47.6 mg g−1.  相似文献   

2.
Dong X  Wang W  Ma S  Sun H  Li Y  Guo J 《Journal of chromatography. A》2005,1070(1-2):125-130
Method of molecularly imprinted solid phase extraction (MISPE) of (-)-ephedrine from Chinese Ephedra has been developed in the research. The molecularly imprinted polymer (MIP) with good selectivity and affinity for (-)-ephedrine was synthesized with (-)-ephedrine as the template, methacrylic acid as the functional monomer. The washing and elution conditions in MISPE were selected and optimized for efficient analyte extraction and sample clean-up. A clean analytical HPLC base line of ephedra extract was obtained after MISPE, which indicated that the sample pre-treatment was efficient. Good recovery and precision were obtained in the assessment for the MISPE-HPLC procedure, which demonstrated it is a reliable method and can be used for the determination of (-)-ephedrine in herbal ephedra.  相似文献   

3.
Size-exclusion chromatography in 1,1,1,3,3,3-hexafluoro-2-propanol   总被引:1,自引:0,他引:1  
Two molecularly imprinted polymers (MIPs) have been synthesised for the selective extraction of 4-nitrophenol (4-NP) from water samples. One polymer was synthesised via a non-covalent approach and the other via a semi-covalent approach. The selectivity of the polymers for 4-NP was evaluated when these polymers were applied in on-line solid-phase extraction (MISPE) coupled to reversed-phase HPLC. The MISPE conditions for both MIPs were optimised and a clean-up step was included to eliminate non-specific interactions. Differences between the two MIPs were observed with the non-covalent MIP being the more selective of the two, whereas the recoveries were slightly higher for the semi-covalent MIP. The performance of the imprinted polymers in the MISPE of real water samples was also evaluated.  相似文献   

4.
《Analytical letters》2012,45(18):2896-2913
Abstract

A highly selective and effective method for the purification and preconcentration of norfloxacin (NFX) in seawater samples was developed based on molecularly imprinted solid-phase extraction (MISPE). The molecularly imprinted polymer was synthesized by precipitation polymerization. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were used as the functional monomer and crosslinker, respectively. The resulting molecularly imprinted polymer (MIP) showed high adsorption for NFX and was selective for its solid-phase extraction. An offline MISPE method followed by high performance liquid chromatography with diode array detection was established for the determination of NFX in seawater. The recoveries of spiked seawater samples using the MISPE columns were satisfactorily higher than 77.6%. The relative standard deviation was less than 5.60%, and the limit of detection was 0.027?μg L?1. Four seawater samples obtained from the Bohai Sea were analyzed, and NFX was found only at one location at a concentration of 0.280?μg L?1.  相似文献   

5.
Molecularly imprinted microspheres (MIMs) for the anticancer drug aminoglutethimide (AG) were synthesized by aqueous suspension polymerization. The expected size and diameter of MIMs are controlled easily by changing one of the surfactant types, ratio of organic‐to‐water phase or stirring rate during polymerization. The obtained MIMs exhibit specific affinity toward AG with imprinting factor of 3.11 evaluated with a chromatographic model. The resultant MIMs were used as the SPE materials for the extraction of AG from human urine. A molecularly imprinted SPE (MISPE) method coupled with HPLC has been developed for the extraction and detection of AG in urine. Our results showed that most impurities from urine can be removed effectively after a washing step and the AG has been enriched effectively after MISPE operation with the recovery of >90% (n = 3). The developed MISPE–HPLC method could be used for enrichment and detection of AG in human urine.  相似文献   

6.
A sorbent was synthesized and investigated for molecularly imprinted solid-phase extraction (MISPE). Molecularly imprinted polymers (MIPs) were synthesized via precipitation polymerization procedure, where methacrylic acid (MAA) was used as functional monomer and ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The imprinting effect and selectivity of the MISPE were evaluated by elution experiments. The resulting MISPE showed high extraction selectivity to malachite green, gentian violet and their metabolites, which may be caused by both the ion exchange and the hydrophobic interactions. The determination of multi-residue for malachite green, gentian violet and their metabolites in aquatic products by HPLC coupled with MISPE was also investigated. The mean recoveries calculated by solvent calibration curve for malachite green (MG), gentian violet (GV), leucomalachite green (LMG) and leucogentian violet (LGV) were from 89.8% to 99.1% for grass carp, 90.6% to 101.2% for shrimp and 91.3% to 96.3% for shellfish. The decision limit (CCα) and the detection capability (CCβ) obtained for MG, GV, LMG and LGV were in the range of 0.11–0.14 and 0.19–0.24 μg kg−1 for grass carp, shrimp and shellfish. The MISPE was successfully used off-line for the determination of MG, GV and their metabolites in aquatic products.  相似文献   

7.
A sorbent was synthesized and investigated for molecularly imprinted solid phase extraction (MISPE). Molecularly imprinted polymers (MIP) were synthesized via precipitation polymerization procedure, where 4-vinyl pyridine (4-VP) was used as functional monomer and ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The imprinting effect of the MISPE was evaluated by elution experiments. The resulting MISPE showed high extraction selectivity to water-soluble and fat-soluble synthetic colorants. The determination of multi-residue for three kinds of water-soluble and six kinds of fat-soluble synthetic colorants in chilli products was also investigated by HPLC coupled with MISPE. The mean recoveries calculated by solvent calibration curve for water-soluble and fat-soluble synthetic colorants were from 72.1% to 95.6% for chilli spice and 72.1% to 92.3% for chilli powder. The decision limit (CCα) and the detection capability (CCβ) obtained for water-soluble and fat-soluble synthetic colorants were in the range of 1.2–1.6 and 1.9–2.4 μg kg−1 in chilli spice and chilli powder. The resulting MISPE was successfully used off-line for the determination of nine kinds of synthetic colorants in chilli products.  相似文献   

8.
An analytical methodology based on a molecularly imprinted solid-phase extraction (MISPE) procedure was developed for the determination of several triazines (atrazine, simazine, desethylatrazine (DEA), desisopropylatrazine (DIA), and propazine) in vegetable samples. A methacrylic acid-based imprinted polymer was prepared by precipitation polymerisation using propazine as template and toluene as porogen. After removal of the template by Soxhlet extraction, the optimum loading, washing, and elution conditions for MISPE of the selected triazines were established. The optimised MISPE procedure was applied to the extraction of the selected triazines in pea, potato, and corn sample extracts and a high degree of clean-up was obtained. However, some remaining interferences, non-specifically and strongly bound to the polymeric matrix, appeared in the chromatogram, preventing quantification of DIA in potatoes and DIA, DEA, and propazine in corn samples. Thus, a new clean-up protocol based on the use of a non-imprinted polymer for removal of these interferences prior to the MISPE step was developed. By following the new two-step MISPE procedure, the matrix compounds were almost completely removed, allowing the determination of all the triazines selected at concentration levels below the established maximum residue limits, making the developed procedure suitable for monitoring these analytes in vegetable samples.  相似文献   

9.
A novel method for the analysis of (3‐hydroxypropyl)mercapturic acid (HPMA), a major acrolein metabolite in human urine incorporating a molecularly imprinted solid‐phase extraction (MISPE) process using N‐acetylcysteine ‐imprinted mesoporous silica particles coupled with LC‐MS/MS detection was developed. The molecularly imprinted mesoporous silica particles were synthesized based on the supported material of ordered mesoporous silica SBA‐15 with N‐acetylcysteine (NAC) as template using surface molecular imprinting technology. The condition of MISPE procedures was optimized. The use of MISPE improved the accuracy and precision of the LC‐MS method and lowered the limit of detection (0.23 ng/mL). The recoveries at three spiked levels ranged between 88.5% to 108.6%. The developed MISPE method enabled the selective extraction of HPMA successfully in human urine and could be used as an effective approach for the determination of ultra‐trace HPMA in complex biological matrices. The results in real samples showed that median levels of HPMA were significantly higher (1922.0 ng/mg of creatinine, N = 75) in smokers than in nonsmokers (759.1 ng/mg of creatinine, N = 5), demonstrating the higher acrolein uptake in smokers than in nonsmokers.  相似文献   

10.
A broad selective molecularly imprinted polymers-based solid phase extraction (MISPE) for levonorgestrel (LNG) from water samples was developed. Using LNG as a template molecule, acrylamide (AA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as linking agent and bulk polymerisation as a synthetic method, the molecularly imprinted polymers (MIPs) were synthesised and characterised. The MIPs displayed a high specific rebinding for LNG with the imprinting factor of 3.71. The Scatchard analysis showed that there was at least one class of binding site for LNG formed in the MIPs with the dissociation constant of 8.046?µg?mL?1. The results of selectivity testing indicated that the MIPs also exhibited high cross-reactivity with structurally related compounds (estrone, methylprednisolone and ethinyl estradiol), but no recognition with non-structurally related compound (indomethacin), suggesting that the MIPs could be used as a broad recognition absorbent. MISPE column was prepared by packing MIPs particles into a common SPE cartridge. The MISPE extraction conditions including loading, washing and eluting solutions were carefully optimised. Water samples spiked with LNG were extracted by MISPE column and detected by high-performance liquid chromatography. The recoveries were found to be 79.97?~?132.79% with relative standard deviations (RSD) of 1.92?~?10.43%, indicating the feasibility of the prepared MIPs for LNG extraction.  相似文献   

11.
A molecularly imprinted polymer (MIP) against lamotrigine (LTG) was prepared, characterized, and its recognition properties were compared with a blank nonimprinted polymer (NIP). Two classes of binding sites were found in the MIP--high affinity (K(D) = 16.2 microM) and low affinity (K(D) = 161.3 microM). Selectivity of the synthesized MIP was examined using compounds with similar structures or therapeutic uses to LTG. In compounds which had structural similarity to LTG, the presence of amine groups appeared to affect binding to the MIP, however overall shape of the molecule was also important. Under the optimal conditions developed, other anticonvulsant drugs tested did not bind the MIP. A molecularly imprinted SPE (MISPE) procedure was developed which had a recovery of 84-89%, interday variation of less than 3.4% and intraday variation of less than 2.8%. The MISPE procedure was compared with a routine liquid-liquid extraction (LLE) procedure used for the HPLC determination of LTG in serum from patients. The data indicated that the MIP synthesized showed both good selectivity and high affinity for LTG and could be used for the extraction of the drug from serum samples or as the receptor layer for an LTG selective biosensor.  相似文献   

12.
《Analytical letters》2012,45(8):1245-1256
A comparison between molecularly imprinted solid phase extraction (MISPE) and liquid–liquid extraction (LLE) was performed for cotinine in human urine followed by gas chromatography analysis. The molecularly imprinted polymer (MIP) was synthesized via bulk methodology employing cotinine, methacrylic acid, and ethylene glycol dimethacrylate as template, functional monomer, and cross-linker, respectively. Both methods were validated with good precision and accuracy. The LLE method (limit of quantification = 10 nanograms per milliliter) was slightly more sensitive than the MISPE (limit of quantification = 15 nanograms per milliliter) procedure, but both methods were able to determine cotinine at typical concentrations in urine. An important advantage of the molecularly imprinted polymer approach was its ability to be reused up to at least 100 times. Other advantages of the MISPE include simple manipulation, low solvent consumption, and low worker exposure.  相似文献   

13.
The development of an easy-to-use, rapid, robust and inexpensive technique is required which can measure the basal concentration of uric acid (UA) lower than 1.0 x 10(-7)M ( approximately 0.017 mgL(-1)) in biological samples to attend the problem of hypouricemia. In the present work an artificial receptor for UA, silica gel-bonded molecularly imprinted polymer (MIP), was used as a sorbent for molecularly imprinted solid-phase extraction (MISPE) in column chromatography. The use of a sensor based on a MIP-modified hanging mercury drop electrode (HMDE), as reported from our laboratory, could estimate UA with detection limit as low as 0.024 mgL(-1) under the optimized conditions of differential pulse, cathodic stripping voltammetric (DPCSV) measurement. However, in the current investigation, with the use of the combination of MISPE followed by detection with a MIP-based HMDE sensor, the minimum detectable concentration could go down to 0.0008 mgL(-1) (RSD=0.63%, S/N=3). The same MIP receptor for both MISPE and the corresponding sensor was able to enhance the preconcentration of analyte substantially so as to attain the desired level of sensitivity; and that to without any interference (cross-reactivity) from other structurally related analogues including the major interferent like ascorbic acid prevalent in the aqueous environment of biological samples.  相似文献   

14.
Molecularly imprinted polymers (MIP) combine the selectivity of immunoaffinity chromatography with the robustness of common solid-phase extraction in what is referred to as molecularly imprinted solid-phase extraction (MISPE). This contribution shows how MIP design may be guided by pharmacophore modeling for the example of citrinin, which is an emerging mycotoxin from cereals. The obtained pharmacophore model allowed searching public databases for a set of citrinin-mimicking molecular surrogates. Imprinted and non-imprinted polymers were subsequently obtained through bulk and core-shell polymerization in the presence of these surrogates. Evaluation of their binding ability for citrinin and structurally related ochratoxin A revealed a promising MIP derived from rhodizonic acid. A protocol for MISPE of citrinin from cereals was subsequently developed and compared to immunoaffinity chromatography with respect to clean-up efficiency and recovery.  相似文献   

15.
Tianhe Jiang  Baolin Chu  Wei Yan 《Talanta》2009,78(2):442-447
A molecularly imprinted polymer (MIP) has been synthesized by a thermo-polymerization method using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, acetonitrile as porogenic solvent, and 17β-estradiol as template. The MIP showed obvious affinity for 17β-estradiol in acetonitrile solution, which was confirmed by absorption experiments. After optimization of molecularly imprinted solid-phase extraction (MISPE) conditions, three structurally related estrogenic compounds (17β-estradiol, estriol, and diethylstilbestrol) were used to evaluate the selectivity of the MIP cartridges. The MIP cartridges exhibited highly selectivity for E2, the recoveries were 84.8 ± 6.53% for MIPs and 19.1 ± 1.93% for non-imprinted polymer (NIP) cartridges. The detection and quantification limits correspond to 0.023 and 0.076 mg L−1. Furthermore, the MISPE methods were used to selectively extract E2 from fish and prawn tissue prior to HPLC analysis. This MISPE-HPLC procedure could eliminate all matrix interference simultaneously and had good recoveries (78.3-84.5%).  相似文献   

16.
Nonylphenol isomers (NP), linear nonylphenol (4-n-NP) and NP short chain ethoxylated derivates (NPEO1 and NPEO2) are degradation products of nonylphenol polyethoxylates, a worldwide used group of surfactants. All of them are considered endocrine disrupters due to their ability to mimic natural estrogens. In this paper, the preparation and evaluation of several 4-n-NP molecularly imprinted polymers (MIPs) for the selective extraction and clean-up of 4-n-NP, NP, NPEO1 and NPEO2 from complex environmental solid samples is described. Among the different combinations tested, a methacrylic acid-based imprinted polymer prepared in toluene provided the better performance for molecularly imprinted SPE (MISPE). Under optimum MISPE conditions, the polymer was able to selectively retain not only linear NP but also the endocrine disruptors NPEO1, NPEO2 and NP with recoveries ranging from 60 to 100%, depending upon the analyte. The developed MISPE procedure was successfully used for the determination of 4-n-NP, NP, NPEO1 and NPEO2 in sediments and sludge samples at concentration levels according to data reported in the literature for incurred samples. Finally, various sludge samples collected at five different sewage treatment plants from Madrid and commercial sludge for agriculture purposes were analysed. The measured concentrations of the different compounds varied from 3.7 to 107.5 mg/kg depending upon the analyte and the sample.  相似文献   

17.
Several molecularly imprinted polymers (MIPs) were prepared in the present work, and their binding properties were evaluated in comparison with a nonimprinted polymer (NIP). An optimized MIP was selected and applied for selective extraction and analysis of haloperidol in rabbit brain tissue. A molecularly imprinted solid-phase extraction (MISPE) method was developed for cleanup and preconcentration of haloperidol in brain samples before HPLC-UV analysis. Selectivity of the MISPE procedure was investigated using haloperidol and some structurally different drugs with similar polarity that could exist simultaneously in brain tissue. The extraction and analytical process was calibrated in the range of 0.05–10 ppm. The recovery of haloperidol in this MISPE process was calculated between 79.9 and 90.4 %. The limit of detection (LOD) and the limit of quantification (LOQ) of the assay were 0.008 and 0.05 ppm, respectively. Intraday precision and interday precision values for haloperidol analysis were less than 5.86 and 7.63 %, respectively. The MISPE method could effectively extract and concentrate haloperidol from brain tissue in the presence of clozapine and imipramine. Finally, the imprinted polymer was successfully applied for the determination of haloperidol in a real rabbit brain sample after administration of a toxic dose. Therefore, the proposed MISPE method could be applied in the extraction and preconcentration before HPLC-UV analysis of haloperidol in rabbit brain tissue.  相似文献   

18.
Shi X  Song S  Sun A  Liu J  Li D  Chen J 《The Analyst》2012,137(14):3381-3389
Group-selective molecularly imprinted polymers (MIPs) for amphenicol antibiotics, including chloramphenicol (CAP), thiamphenicol (TAP), florfenicol (FF), and florfenicol amine (FFA), were developed for the first time using TAP as the template molecule. The characteristics of the obtained MIPs were systematically evaluated by chromatographic methods and frontal analysis, demonstrating that the MIPs had excellent chromatographic behaviors, good selectivity, and high-binding capability. A molecularly imprinted solid-phase extraction (MISPE) procedure was developed based on the chromatography results. The MIPs exhibited better group selectivity for CAP, TAP, FF, and FFA than non-imprinted polymers (NIPs) under the optimized washing conditions of 10% acetonitrile in PBS buffer (25 mmol L(-1), pH = 5). Compared with conventional solid-phase extraction, significant recoveries ranging from 92.4% to 98.8% with lower relative standard deviation values in the range of 3.2-7.3% for both intraday- and interday-assays were obtained. The limits of detection (LODs) of MISPE for CAP, TAP, FF, and FFA in shrimp were found to be 0.016, 0.093, 0.102, and 0.029 μg kg(-1), respectively. The results acquired in this study contribute to the strategic development of MIPs and MISPE methods for the multi-residual recognition of antibiotics from complex matrices.  相似文献   

19.
To assess the potential risks associated with the environmental exposure of β-lactam antibiotics (BLAs), the monitoring of the occurrence, distribution, and fate of these emerging contaminants in the environment is required. Herein, we demonstrate a molecularly imprinted solid-phase extraction (MISPE) method for selective and reliable screening of trace BLAs in river and tap water. By developing a low-temperature photopolymerization, highly selective molecularly imprinted polymers (MIPs) for five BLAs (penicillin G, amoxicillin, ampicillin, nafcillin and mezlocillin) were synthesized. Nafcillin was chosen as a pseudo template to make the MIP sorbent (Nafc-MIP), which was used in pseudo-template MISPE for preconcentration of the other four BLAs from river and tap water. The application of pseudo-template MISPE overcomes the template bleeding, which significantly elevates the sample background and restricts the application of MIP for detection of the target BLA below 2 μg/L. The average recoveries of BLAs are in the range of 60–90% when Nafc-MIP was adopted as the selective MISPE sorbent. The developed method was validated, and applied to the screening of trace β-lactam antibiotics in river and tap water. The linearity of the calibration curve for each BLA was observed over the range of 0.1–20 μg/L (r > 0.998). The β-lactam antibiotics were found within the range of 0–9.56 μg/L in river water at the downstream of antibiotics manufacturers, and none were detected in the tap water.  相似文献   

20.
In the present study, two different imprinted polymers were synthesised by precipitation polymerisation using methacrylic acid (MAA) or 4-vinylpyridine (VP) as monomer and fenuron (FEN, a phenylurea herbicide) as template. After template removal, their ability to recognise fenuron was evaluated and the optimum loading, washing and elution conditions were established. From this study, it was concluded that imprinted binding sites were not formed in the vinylpyridine-based polymer. However, methacrylic acid-based polymer was able to recognise fenuron with high affinity and to selectively retain it from a mixture of several phenylurea herbicides. In addition, different rebinding experiments were carried out and the experimental binding isotherms were fitted to the Langmuir-Freundlich (LF) isotherm in order to assess the binding site distribution. It was concluded that the methacrylic acid-based polymer possesses a homogeneous binding site distribution and permits to achieve quantitative recoveries in a wide concentration range in molecularly imprinted solid-phase extraction (MISPE) processes. The developed MISPE procedure using methacrylic acid-based polymeric micro-spheres was evaluated for the trace-enrichment and clean-up of fenuron from plant sample extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号