首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Compounds [HQ]2[Hg(L)2] and [HQ][PhHg(L)] [where HQ = diisopropylammonium cation; L = pspa, fspa, tspa, where p = 3-(phenyl), f = 3-(2-furyl), t = 3-(2-thienyl), and spa = 2-sulfanylpropenoato] have been prepared by the reaction of mercury(II) acetate or phenylmercury(II) acetate with the corresponding acid in the presence of diisopropylamine in ethanol. The compounds have been characterized by elemental analysis, FAB mass spectrometry and IR and NMR (1H, 13C) spectroscopy. The crystal structures of the [HQ]2[Hg(L)2] compounds show the presence of diisopropylammonium cations and [Hg(L)2]2− anions. In each anion the Hg atom is in an HgO2S2 environment and this can be described as nido-tbp. The crystal structures of the [HQ][PhHg(L)] compounds show the presence of diisopropylammonium cations and [PhHg(L)] anions in which the Hg atom adopts an HgCOS distorted T-environment. The NMR data suggest that the coordination mode of the ligand L2− determined by X-ray diffractometry in the solid remains in solution.  相似文献   

2.
Reduction by NaBH4 of the imine functions of (5,7,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)-nickel(II) and -copper(II), and of their 13-ethyl-5,7,7-trimethyl-homologues, yield the nitro-substituted cyclic tetraamine cations (5,5,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradecane)-nickel(II) and -copper(II), [M(neh)]2+, and (13-ethyl-5,5,7-trimethyl-homologues, [M(nph)]2+, respectively. The nickel(II) cations form square–planar, singlet ground, state salts with poorly coordinating anions and octahedral, triplet ground state, compounds with additional ligands, trans-β-[Ni(neh)A2], A = Cl, NCS and trans-β-[Ni(neh)A2](ClO4)2, X = NH3, MeCN, all with nitrogen configuration III, 1R,4R,8S,11S = β. With oxalate the chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) is formed. Folded macrocycle compounds cis-α-[Ni(neh)(C5H7O2)]ClO4 and cis-α-[{Ni(neh)}2(C2O4)](ClO4)2 are formed with the chelates acetylacetonate and oxalate, with configuration 1R,4R,8R,11R = α. These react with HClO4 to form metastable α-[Ni(neh)](ClO4)2 with retention of configuration. The copper(II) cations form crimson salts with poorly coordinating anions and compounds of the type β-[Cu(neh)A]ClO4 of varying shades of blue with coordinating anions. Structures of singlet ground state square–planar nickel(II) compounds β-[Ni(neh)](ClO4)2 · H2O, β-[Ni(neh)](ClO4)2, β-[Ni(neh)]2[ZnCl3(OH2)]2[ZnCl4] · H2O and α-[Ni(neh)](ClO4)2, the triplet ground state chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) and of square–pyramidal β-[Cu(nph)Cl]ClO4 are reported.  相似文献   

3.
This paper reports an indirect flow-injection (FI) method for the determination of the anti-hyperthyroid drugs methimazole and carbimazole in pharmaceuticals. The method was based on the inhibition that these thioimidazole drugs caused on the Cu(II)-catalysed chemiluminescence (CL) reaction between luminol and H2O2. The CL reaction was induced on-line and injection of the sample produced negative peaks as a result of the Cu(II) complexation by the analytes. The height of the FI peaks was proportional to the drug concentration in the sample. The linear range was 2-100 and 3-120 mg l−1 for methimazole and carbimazole, respectively. The relative standard deviation was 1.9% for methimazole and 2.1% for carbimazole at the 50 mg l−1 level (n=10). Common excipients present in pharmaceutical tablets were found not to interfere with the analysis. The method was applied to the determination of methimazole and carbimazole in pharmaceutical formulations with recoveries in the range 100±4%.  相似文献   

4.
Ion-imprinted polymer (IIP) particles are prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as crosslinking agent and 2,2′-azo-bis-isobutyronitrile as initiator in the presence of Cu(II), a Cu(II)-4-(2-pyridylazo)resorcinol (Cu(II)-PAR) complex, and PAR only. A batch procedure is used for the determination of the characteristics of the Cu(II) solid phase extraction from the IIP produced. The results obtained show that the Cu(II)-PAR IIP has the greatest adsorption capacity (37.4 μmol g−1 of dry copolymer) among the IIPs investigated. The optimal pH value for the quantitative preconcentration is 7, and full desorption is achieved by 1 M HNO3. The selectivity coefficients (SCu/Me) for Me = Ni(II), Co(II) are 45.0 and 38.5, respectively. It is established that Cu(II)-PAR IIPs can be used repeatedly without a considerable adsorption capacity loss. The determination of Cu(II) ions in seawater shows that the interfering matrix does not influence the preconcentration and selectivity values of the Cu(II)-PAR IIPs. The detection and quantification limits are 0.001 μmol L−1 (3σ) and 0.003 μmol L−1 (6σ), respectively.  相似文献   

5.
The reaction of [M(H2L)2] [M = Ni(II) Cu(II)] (K+H2L = N-(pyridine-4-carbonyl)-hydrazine carbodithioate) with excess of ethylenediamine (en) gave mixed ligand complexes [Ni(en)2(4-pytone)2] (4-pytone = 5-(4-pyridyl)-1,3,4-oxadiazole-2-thione), and [Cu(en)2](4-pytol)2·H2O (4-pytol = 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol). The metal complexes have been characterized with the aid of elemental analyses, IR, magnetic susceptibility and single crystal X-ray studies. Complexes (1) and (2) crystallize in monoclinic system, space group P1 21/n1 and C2/c, respectively. The ligand after cyclization is present in the deprotonated thiol form in the Cu(II) complex where it is ionically bonded through sulfur. In the Ni(II) complex (1) bonding of the ligand take place through oxadiazole nitrogen and the ligand exists as the thione form.  相似文献   

6.
For the first time, the formation of a luminescent hexanuclear cluster has been used for the selective determination of copper. In aqueous solutions, the non-luminescent ligand N-ethyl-N′-methylsulfonylthiourea (EMT) forms an intensely red luminescent hexanuclear Cu(I)-cluster with an emission maximum at 663 nm only with Cu(II) ions. The intensity of the luminescence is proportional to the Cu(II) concentration and allows for selective Cu determinations in the μg l−1-range. Ubiquitous metal ions such as Fe(III), Al(III), Ca(II), Mg(II), and alkaline metal ions, as well as other heavy metal ions, e.g. Co(II), Ni(II), Zn(II), Cd(II), Hg(II), and Pb(II) are tolerated in concentrations up to 50 mg l−1. The detection limit for Cu(II) in aqueous solution, calculated according to Funk et al. [Qualitätssicherung in der Analytischen Chemie, Verlag Chemie, Weinheim, 1992], is 113 μg l−1. The cluster formation has been used for the quantitative analysis of copper in tap water and in industrial water, as well as for the localization of copper adsorbed by activated-sludge flocs.  相似文献   

7.
Jiang N  Chang X  Zheng H  He Q  Hu Z 《Analytica chimica acta》2006,577(2):225-231
A new Ni(II)-imprinted amino-functionalized silica gel sorbent with excellent selectivity for nickel(II) was prepared by an easy one-step reaction by combining a surface imprinting technique for selective solid-phase extraction (SPE) of trace Ni(II) in water samples prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher selectivity and adsorption capacity for Ni(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Ni(II) was 12.61 and 4.25 mg g−1, respectively. The relatively selective factor (αr) values of Ni(II)/Cu(II), Ni(II)/Co(II), Ni(II)/Zn(II) and Ni(II)/Pd(II) were 45.99, 32.83, 43.79 and 28.36, which were greater than 1. The distribution ratio (D) values of Ni(II)-imprinted polymers for Ni(II) were greatly larger than that for Cu(II), Co(II), Zn(II) and Pd(II). The detection limit (3σ) was 0.16 ng mL−1. The relative standard deviation of the method was 1.48% for eight replicate determinations. The method was validated by analyzing two certified reference materials (GBW 08618 and GBW 08402), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace nickel in plants and water samples with satisfactory results.  相似文献   

8.
A yellow compound which was crystallised from a solution of (6,8,8,14,16,16-hexamethyl-1,5,9,13-tetraazacyclohexadeca-5,13-diene)bis(isothiocyanato)nickel(II) in aqueous zinc(II) chloride has cations with singlet ground state nickel(II) in square-planar coordination by the nitrogen atoms of the macrocycle. The asymmetric unit has two similar cations. The N4 group of one cation is near coplanar (r.m.s. displacements ±0.009(1) Å, with Ni displaced by 0.048(1) Å from this plane) while the other cation has significant tetrahedral twisting of the N4 group (r.m.s. displacements of N atoms ±0.126(2) Å, with Ni displaced by 0.027(2) Å from this plane). The mean Ni–N distances are Ni–Namine = 1.950(6) and Ni–Nimine = 1.897(6) Å. Both cations have N-meso configurations with saddle conformations, with the substituted chelate rings in boat conformations tilted to one side of the NiN4 ‘plane’ and the unsubstituted chelate rings tilted to the other side, one in a boat conformation and the other with the central methylene group disordered, the components forming boat {s.o.f. 0.70(1) and 0.74(1) for the two cations} and chair conformation chelate rings. The counter-ions have tetrahedrally coordinated zinc(II) ions, one as [ZnCl2(NCS)2]2− ions and the other with one ligand site with disordered Cl {s.o.f. 0.78(1)} and NCS ligands, i.e. with disordered [ZnCl2(NCS)2]2− and [ZnCl(NCS)3]2− ions, with an overall composition of [Ni(trans-Me6[16]diene)][ZnCl1.9(NCS)2.1].  相似文献   

9.
Reactions of [Ni(L)]Cl2 · 2H2O (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with isophthalic acid (H2isoph) and 1,3,5-cyclohexanetricarboxylic acid (H3chtc) yield the 1D nickel(II) complexes {[Ni(L)(isoph)] · 3H2O}n (1) and {[Ni(L)(H-chtc)] · H2O}n (2). The structures were characterized by X-ray crystallography, spectroscopic and magnetic susceptibility. The crystal structures of the 1D chain compounds 1 and 2 show an elongated distorted octahedron about each nickel(II) ion. The magnetic behavior of two compounds exhibits weak intrachain antiferromagnetic interaction with J values of −0.93 cm−1 for 1 and −1.28 cm−1 for 2. The electronic spectra of the complexes are significantly affected by the nature of the carboxylate ligands.  相似文献   

10.
Fotini S. Kika 《Talanta》2007,71(3):1405-1410
The present work reports the first sequential injection (SI) method for the spectrophotometric determination of Ti(IV). The method is based upon the reaction of Ti(IV) with chromotropic acid (CA) in acidic medium to form a water-soluble complex (λmax = 420 nm). The chemical and instrumental variables of the system that affected the reaction were studied. Selectivity was greatly enhanced using ascorbic acid. A linear calibration graph was obtained in the range 0.2-10.0 mg l−1 Ti(IV) at a sampling frequency of 24 h−1. The precision was satisfactory (sr = 1.5% at 5.0 mg l−1 Ti(IV), n = 12) and the 3σ limit of detection, cL, was 0.7 mg l−1 (n = 10). The developed method proved to be adequately selective and was applied successfully to the analysis of real samples (dental implant and natural Moroccan phosphate rock) giving accurate results based on recovery studies (98-105%).  相似文献   

11.
A novel solid phase extraction technique for the speciation of trace dissolved Fe(II) and Fe(III) in environmental water samples was developed by coupling micro-column packed with N-benzoyl-N-phenylhydroxylamine (BPHA) loaded on microcrystalline naphthalene to electrothermal vaporization inductively coupled plasma-optical emission spectrometry (ETV-ICP-OES). Various influencing factors on the separation and preconcentration of Fe(II) and Fe(III), such as the acidity of the aqueous solution, sample flow rate and volume, have been investigated systematically, and the optimized operation conditions were established. At pH 3.0 Fe(III) could be selectively retained by micro-column (20 mm × 1.4 mm, i.d.) packed with BPHA immobilized on microcrystalline naphthalene, and Fe(II) passed through the micro-column. Both Fe(II) and Fe(III) could be adsorbed by the micro-column at pH 6.5. Thus, the total Fe could be determined without the need for preoxidation of Fe(II) to Fe(III). The retained Fe(III) or the Fe(II) and Fe(III) was subsequently eluted by 0.1 ml of 1 mol l−1 HCl. The adsorption capacity of the solid phase adsorption material was found to be 45.0 mg g−1 for Fe(III) at pH 3.0 and 65.3 mg g−1 for Fe(II) at pH 6.5, respectively. The detection limit (3σ) of 0.053 μg l−1 was obtained with a practical enrichment factor of 156 at a sample volume of 17 ml. The relative standard deviations of 4.2% and 4.6% (CFe(III) = CFe(II) = 10 μg l−1, n = 7) for Fe(III) and total iron were found, respectively. The method was successfully applied to the determination of trace Fe(II) and Fe(III) in environmental water samples (East Lake water, local tap water and mineral water). In order to validate the method, the developed method was applied to the determination of total iron in certified materials of NIES NO.10-b rice flour and GBW07605 tea leaves, and the results obtained were in good agreement with the certified values.  相似文献   

12.
The novel nickel(II) (1) and copper(II) (2) complexes bearing 2′-(4′,6′-di-tert-butylhydroxy-phenyl)-1,4,5-triphenyl imidazole ligand have been synthesized and characterized. The molecular structure analyses of complexes 1 and 2 indicated that Ni(II) centre in 1 adopts a distorted tetrahedral coordination geometry with a dihedral angle of 85.2° between Ni(1)O(1)N(1) plane and Ni(1)O(1A)N(1A) plane, while the Cu(II) centre in 2 represents a distorted square planar coordination geometry with a cis-N2O2 arrangement of the donor atoms, the dihedral angle being 32° between Cu(1)O(1)N(1) plane and Cu(1)O(1A)N(1A) plane. After activation with methylaluminoxane (MAO), both Ni(II) and Cu(II) complexes can be used as catalysts for the addition polymerization of norbornene (NB). The polynorbornenes (PNBs) are produced with very high polymerization activity (108 g PNB mol−1 Ni h−1) for Ni(II) complex and moderate catalytic activity (105 g PNB mol−1 Cu h−1) for Cu(II) complex, respectively. The high molecular weight polynorbornenes (106) are obtained for complexes 1 and 2. Moreover, the distinct effects of polymerization temperature and Al/M ratio on catalytic activities and molecular weights of polymers are discussed.  相似文献   

13.
A simple and highly sensitive kinetic fluorimetric method is proposed for the determination of trace tannins, based on the activation of tannins on the oxidation of rhodamine 6G (Rh 6G) by hydrogen peroxide catalyzed by Cu(II) ion. The calibration graph was rectilinear in the range 0.08-1.28 mg l1 for tannin, the 3σ detection limit for tannin is 0.0455 mg l1. The relative standard deviation for 11 determinations of 0.4 mg l1 tannin is 0.96%. The proposed method has been successfully used to determine tannins in tea and Chinese gall. The results obtained were compared with those provided by the Folin-Ciocalteu method. This is the first procedure to be reported for the determination of tannins based on fluorimetric measurements.  相似文献   

14.
A new cobalt Schiff-base complex, [Co(L)(OH)(H2O)] (where L = [N,N′-bis(2-aminothiophenol)-1,4-bis(carboxylidene phenoxy)butane), was synthesized and its electrochemical and spectroelectochemical properties were investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and thin-layer spectro-electrochemistry in solutions of dimethyl sulfoxide (DMSO) and dichloromethane (CH2Cl2). The [Co(L)(OH)(H2O)] complex displays two well-defined reversible reduction processes with the corresponding anodic waves. The half-wave potentials of the first and second reduction processes were displayed at E1/2 = 0.08 V and E1/2 = −1.21 V (scan rate: 0.100 Vs−1) in DMSO, and E1/2 = −0.124 V and E1/2 = −1.32 V (scan rate: 0.100 Vs−1) in CH2Cl2. The potentials of the reduction processes in DMSO are shifted toward negative potentials (0.220–0.112 V) compared to those in CH2Cl2. The electrochemical results are assigned to two one-electron reduction processes; [Co(III)L] + e → [Co(II)L] and [Co(II)L] + e → [Co(I)L]2−. The six-coordination of the complex remains unchanged during the reduction processes and the electron transfer processes were not followed by a chemical reaction upon scan reversal. It was also seen that [Co(L)(OH)(H2O)] was reduced at a more positive potential than the corresponding salen analogs. The shift and reversibility are apparently related to the high degree of electron delocalization of the [Co(L)(OH)(H2O)] complex, having a N2O2S2 donor set and two additional benzene units. Additionally, in situ spectroelectrochemical measurements support Co(III)/Co(II) and Co(II)/Co(I) reversible reduction processes with the observation of the corresponding spectral changes with the applied potentials Eapp = −0.40 and −1.60 V. Application of the spectroelectrochemical results allowed the determination ofE1/2 and n (the number of electrons) from the spectra of the fully oxidized and reduced species in one unified experiment as well. The results obtained by this method are in agreement with those by the CV and DPV methods.  相似文献   

15.
Wittaya Ngeontae 《Talanta》2009,78(3):1004-630
Chemically modified silica containing amidoamidoxime group was studied as a sorbent for solid-phase extraction (SPE) and preconcentration of Cu(II) prior to determination by flame atomic absorption spectrometry (FAAS). The sorbent showed an extremely high selectivity towards Cu(II) in the pH range of 4-6, while the extraction of Pb(II), Cd(II), Ni(II) and Co(II) was low. The adsorption isotherm followed the Langmuir model and the maximum sorption capacity of 0.0163 mmol Cu(II) g−1 was achieved. In the flow system, Cu(II) was completely retained on a column containing 40 mg of the modified silica at the flow rate of 4.0 mL min−1 and quantitatively eluted by 5 mL of 1% (v/v) HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg L−1 was observed. When applied for preconcentration and determination of Cu(II) in tap water, pond water, and seawater, the recoveries were 96, 101, and 95%, respectively, with high precision (% relative standard deviation (R.S.D.) < 4) and low method detection limit (9 μg L−1).  相似文献   

16.
Silica gel chemically bonded with aminothioamidoanthraquinone was synthesized and characterized. The metal sorption properties of modified silica were studied towards Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). The determination of metal ions was carried out on FAAS. For batch method, the optimum pH ranges for Pb(II), Cu(II) and Cd(II) extraction were ≥3 but for Ni(II) and Co(II) extraction were ≥4. The contact times to reach the equilibrium were less than 10 min. The adsorption isotherm fitted the Langmuir's model showed the maximum sorption capacities of 0.56, 0.30, 0.15, 0.12 and 0.067 mmol/g for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively. In the flow system, a column packed modified silica at 20 mg for Pb(II) and Cu(II), 50 mg for Cd(II), 60 mg for Co(II), Ni(II) was studied at a flow rate of 4 and 2.5 mL/min for Ni(II). The sorbed metals were quantitatively eluted by 1% HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg/L was observed. The application of this modified silica gel to preconcentration of pond water, tap water and drinking water gave high accuracy and precision (%R.S.D. ≤ 9). The method detection limits were 22.5, 1.0, 2.9, 0.95, 1.1 μg/L for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively.  相似文献   

17.
A spectrophotometric method is reported for the determination of bismuth in pharmaceutical products using sequential injection analysis. Methylthymol blue (MTB) was used as a color forming reagent and the absorbance of the Bi(III)-MTB complex was monitored at 548 nm. The various chemical and physical variables that affected the reaction were studied. A linear calibration graph was obtained in the range 0.0-75.0 mg l−1 Bi(III) at a sampling frequency of 72 h−1. The reagent consumption was considerably reduced compared to conventional flow injection systems, as only 150 μl of MTB were consumed per run. The precision was very satisfactory (sr=0.5%, at 50.0 mg l−1 Bi(III), n=12) and the limit of detection, cL, was 0.250 mg l−1. The developed method was applied successfully to the analysis of various pharmaceutical products containing Bi(III). The relative errors er, were <1.5% in all cases and were evaluated by comparison of the obtained results with those found using atomic absorption spectrometry as the reference method.  相似文献   

18.
The structure of a series of [M(bdt)2]q complexes, M = Cu, Ni or Co, bdt benzene-1,2-dithiolate, q = −1, −2 or −3 with up to two unpaired electrons, has been optimized at B3LYP/6-311G* level of theory as the 6-31G* basis incorrectly produces non-planar metallocycles. Square-planar 1[Cu(bdt)2], 2[Ni(bdt)2] and 3[Co(bdt)2] systems are the most stable ones in agreement with experimental data. The formal oxidation state of the central atom M defined using the total complex charge q differs from the real M oxidation state based on its d-electron population which is always between M(I) and M(II). The greatest deal of the electron structure changes during the reduction/oxidation is related to the bdt ligands, the strength of their ‘non-innocent’ character depends on M and on the spin state of the complex. These changes are not restricted to sulphur atoms only, including spin density distribution.  相似文献   

19.
This study reports a sensitive solvent extraction flow-injection (FI) method for the simultaneous spectrophotometric determination of free cyanide and thiocyanate in human saliva and pralidoxime solutions. Cyanide and thiocyanate form colored (λmax=540 nm) ternary complexes with copper and 2,2′-dipyridyl-2-quinolylhydrazone (DPQH) that are extractable into chloroform. The determination of thiocyanates in the presence of cyanides is accomplished after on-line masking of the latter with formaldehyde through a binary inlet static mixer (BISM). Total thiocyanates and cyanides are determined in a second run, without the use of the masking agent. The proposed method allows the determination of the analytes in the range of 0-4 mg l−1 thiocyanates and 0-3 mg l−1 cyanides, with the 3σ detection limits being 0.007 and 0.004 mg l−1, respectively. The precision of the method (sr<1.0% at 1 mg l−1 CN or SCN, n=12 in both cases) and the sampling rates were quite satisfactory (60 injections per hour). The method was applied to the analysis of human saliva and pralidoxime solutions and gave recoveries in the range of 98.0-102.2% for both analytes whereas the mean relative error was er=1.7%.  相似文献   

20.
Reduction of one imine function of (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)nickel(II) with 1 molar proportion of NaBH4 produces as the major product the tri-amine-mono-imine macrocyclic cation (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradec-4-ene)nickel(II), Ni(tm)]2+. Pairs of isomeric singlet ground state perchlorate and tetrachlorozincate salts of [Ni(tm)]2+ were prepared and the structures determined for the 1RS,8SR,11SR,12RS (labeled as β) and 1RS,8RS,11RS,12SR (labeled as α) tetrachlorozincate salts. Triplet ground state trans-β-[Ni(tm)(NCS)2] and catena-trans-{β-Ni(tm)-NC-Ni(CN)2-CN-}n·2nH2O have the macrocycle in planar coordination and α-[{Ni(tm)}2(C2O4)](ClO4)2 has the macrocycle folded. With pentane-2,4-dione the compounds [β-Ni(tm)]·[α-Ni(tm)(acac)](ClO4)3 and [Ni(teta)]·[α-Ni(tm)(acac)](ClO4)3 (tetC-meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) with both square-planar and octahedral Ni(II) cations were prepared and the latter was structurally characterized. Isomerisation in solution of metastable α-[Ni(tm)]2+ to stable β-[Ni(tm)]2+ is extremely slow, even in base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号