首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A column solid-phase extraction method for the preconcentration and determination of cadmium(II), copper(II), cobalt(II), iron(III), lead(II), nickel(II) and zinc(II) dithizone chelates by atomic absorption spectrometry has been described. Diaion HP-2MG was used as adsorbent for column studies. The influences of the various analytical parameters including pH of the aqueous solutions, amounts of ligand and resin were investigated for the retentions of the analyte ions. The recovery values are ranged from 95 to 102%. The influences of alkaline and earth alkaline ions were also discussed. The preconcentration factor was 375, when the sample volume and final volume are 750 and 2 ml, respectively. The detection limits of the analyte ions (k=3, N=21) were varying 0.08 μg/l for cadmium to 0.25 μg/l for lead. The relative standard deviations of the determinations at the concentration range of 1.8×10−4 to 4.5×10−5 mmol for the investigated elements were found to be lower than 9%. The proposed solid-phase extraction procedure were applied to the flame atomic absorption spectrometric determinations of analyte ions in natural waters (sea, tap, river), microwave digested samples (milk, red wine and rice) and two different reference standard materials (SRM1515 apple leaves and NRCC-SLRS-4 riverine water).  相似文献   

2.
Dithizone (diphenylthiocarbazone) was used as a complexing agent in cloud point extraction for the first time and applied for selective preconcentration of trace amounts of silver. The analyte in the initial aqueous solution was acidified with sulfuric acid (pH<1) and Triton X-114 was added as a surfactant. After phase separation, based on the cloud point separation of the mixture, the surfactant rich phase was diluted with tetrahydrofuran (THF) and the analyte determined in the enriched solution by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, a preconcentration factor of 43 was obtained for only 10 ml of sample. The analytical curve was linear in the range of 3-200 ng ml−1 and the limit of detection was 0.56 ng ml−1. The proposed method was applied to the determination of silver in water samples.  相似文献   

3.
Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using a column packed with graphene as sorbent was developed for the preconcentration of trace amounts of lead (Pb) using dithizone as chelating reagent prior to its determination by flame atomic absorption spectrometry. Some effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 10.0–600.0 μg L−1 with a detection limit of 0.61 μg L−1. The relative standard deviation for ten replicate measurements of 20.0 and 400.0 μg L−1 of Pb were 3.56 and 3.25%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Pb. The proposed method was successfully applied in the analysis of environmental water and vegetable samples. Good spiked recoveries over the range of 95.3–100.4% were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes.  相似文献   

4.
A novel automatic sequential injection (SI) single-drop micro-extraction (SDME) system is proposed as versatile approach for on-line metal preconcentration and/or separation. Coupled to electrothermal atomic absorption spectrometry (ETAAS) the potentials of this SI scheme are demonstrated for trace cadmium determination in water samples. A non-charged complex of cadmium with ammonium diethyldithiophosphate (DDPA) was produced and extracted on-line into a 60 μL micro-drop of di-isobutyl ketone (DIBK). The extraction procedure was performed into a newly designed flow-through extraction cell coupled on a sequential injection manifold. As the complex Cd(II)-DDPA flowed continuously around the micro-droplet, the analyte was extracting into the solvent micro-drop. All the critical parameters were optimized and offered good performance characteristics and high preconcentration ratios. For 600 s micro-extraction time, the enhancement factor was 10 and the sampling frequency was 6 h−1. The detection limit was 0.01 μg L−1 and the precision (RSD at 0.1 μg L−1 of cadmium) was 3.9%. The proposed method was evaluated by analyzing certified reference material.  相似文献   

5.
An on-line solid phase extraction (SPE) preconcentration system coupled to flame atomic absorption spectrometer (FAAS) was developed for determination of copper and cadmium at μg L−1 level. The method is based on the on-line retention of copper and cadmium on a microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1,10-phenanthroline and subsequent elution with ethanol and determination by FAAS. The effect of chemical and flow variables that could affect the performance of the system was investigated. The relative standard deviation (n = 6) at 20 μg L−1 level for copper and cadmium were 1.4 and 2.2% and the corresponding limits of detection (based on 3σ) were 0.04 and 0.14 μg L−1, respectively. The method was successfully applied to determination of copper and cadmium in human hair and water samples.  相似文献   

6.
In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L−1, a sample flow rate of 4.5 mL min−1 and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 μg L−1 and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 μg L−1, with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 μg L−1, n = 7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.  相似文献   

7.
A procedure for the determination of trace level of copper(II) and cadmium(II) by FAAS using an on-line preconcentration system has been proposed. In this system, copper and cadmium ions were adsorbed onto a minicolumn packed with silica gel modified with niobium(V) oxide (Nb2O5-SiO2), followed by nitric acid elution in reverse mode and determination on-line by flame atomic absorption spectrometry (AAS) without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for copper(II) and cadmium(II) was 34.2 and 33.0, respectively, using a preconcentration time of 2 min. The limit of detection for copper(II) and cadmium(II) was 0.4, and 0.1 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 15 μg l−1 of copper and 10 μg l−1 of cadmium, by analyzing a series of seven replicates, was 1.8 and 1.6%, respectively. The accuracy was assessed through recovery experiments of certified material and water samples.  相似文献   

8.
In this study a new method for determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed. Flow and chemical variables of the proposed system were optimized through multivariate designs. The limit of detection for cadmium was 5.50 μg L−1 and the precision was below 2.3% (35.0 μg L−1, n = 9). The analytical curve was linear from 5 to 150 μg L−1, with a correlation coefficient of 0.9993. The developed method was successfully applied to spiked alcohol fuel, and accuracy was assessed through recovery tests, with recovery ranging from 97.50 to 100%.  相似文献   

9.
A simple, sensitive and inexpensive flow injection solid phase extraction (SPE) system was developed for automatic determination of trace level concentrations of metals. The potentials of this novel scheme, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace cadmium and lead determination in environmental water samples. The method was based on on-line chelate complex formation of target species with ammonium diethyldithiophosphate (DDTP), retention onto the surface of reversed-phase poly(divinylbenzene-N-vinylpyrrolidone) co-polymeric beads (Oasis HLB) and elution with methanol prior to atomization. A special PVC adapter was designed for easy and rapid replacement of the commercially available SPE cartridge. All main chemical and hydrodynamic parameters affecting the complex formation, sorption and elution of the analyte were optimized thoroughly. Moreover, the effect of potential interfering species occurring in environmental samples was also explored.For 90 s preconcentration time, enhancement factors of 155 and 180, detection limits (3s) of 0.09 μg L− 1 and 0.9 μg L− 1 and relative standard deviations (R.S.D.) of 2.9% (at 4.0 μg L− 1) and 2.6% (at 20.0 μg L− 1) were obtained for cadmium and lead, respectively, with a sample throughput of 24 h− 1. The measurement trueness of the developed method was evaluated by analyzing a certified reference material and spiked environmental water samples. The proposed method is well suited to detect the target elements at concentration levels below the maximum allowed concentrations endorsed by the European Framework Directive (2008/105/EC) in inland and coastal waters.  相似文献   

10.
Metal determinations at low concentration levels (≤ng mL−1) comprise one of most important targets in analytical chemistry. This interest also increases in different areas such as biology, medicine, environment and food samples. In spite of inherent high sensitivities obtained for electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma-mass spectrometry (ICP-MS), these techniques have some limitations depending on the concomitants. As a result, interest in preconcentration techniques still continues increasingly for trace metal determinations by flame atomic absorption spectrometry (FAAS) due to the high accuracy of this method.In this work, thioureasulfonamide resin was synthesized, characterized and applied as a new sorption material for determinations of cadmium and lead in water samples. The method is based on the sorption of Cd and Pb ions on the synthesized resin without using any complexing reagent. The optimization of experimental conditions was performed using factorial design including pH, amount of resin, contact time, first sample volume and final eluent volume. Using the experimental conditions defined in the optimization, the method was applied to the determination and preconcentration of Cd and Pb at ng mL−1 level in natural water. Flame AAS was used for trace metal determinations. This method exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent and optimum pH of solution presents in acidic media. Consequently, 600- and 360-fold improvements in the sensitivity of FAAS were achieved by combining the slotted tube atom trap-atomic absorption spectrometry (STAT-FAAS) and the purposed enrichment method for Cd and Pb, respectively.  相似文献   

11.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

12.
Ayata S  Bozkurt SS  Ocakoglu K 《Talanta》2011,84(1):212-215
A new method based on microcolumn packed with ionic liquid-modified silica combined with flame atomic absorption spectrometry has been developed for the determination of lead in environmental samples. Several factors influencing the preconcentration efficiency of lead and its subsequent determination, such as pH of the sample, flow rate, mass of ionic liquid, and interfering effect, have been investigated. Lead could be quantitatively retained by ionic liquid-modified silica in the pH range of 5-7, and then eluted completely with 3.0 mL 1.0 mol L−1 HCl. The detection limit of this method for lead was 0.7 μg L−1 with preconcentration factor of 185, and the relative standard deviation (RSD) was 4.2% at 0.1 μg mL−1 Pb(II). This method has been applied for the determination of trace amount of lead in NIST standard reference material 2709 (San Joaquin Soil) and river water samples with satisfactory results.  相似文献   

13.
A simple in situ solvent formation microextraction methodology based on the application of ionic liquid (IL) as an extractant solvent and sodium hexafluorophosphate (NaPF6) as an ion-pairing agent was proposed for the preconcentration of trace levels of cadmium. In this method cadmium was complexed with O,O-diethyldithiophosphate (DDTP) and extracted into an ionic liquid phase. After phase separation, the enriched analyte in the final solution is determined by flame atomic absorption spectrometry (FAAS). ISFME is a simple and rapid method for extraction and preconcentration of metal ions from sample solutions containing a high concentration of salt. Some effective factors that influence the microextraction efficiency were investigated and optimized. Under the optimum experimental conditions, the limit of detection (3 s) and the enhancement factor were 0.07 μg L−1 and 78, respectively. The relative standard deviation (R.S.D.) was obtained 2.42%. The accuracy of the method was confirmed by analyzing certified reference materials for trace elements in seawater (GBW (E) 080040 seawater). The proposed method was successfully applied for the determination of cadmium in water samples and food grade salts.  相似文献   

14.
A novel automatic on-line liquid phase micro-extraction method based on drop-in-plug sequential injection lab-at-valve (LAV) platform was proposed for metal preconcentration and determination. A flow-through micro-extraction chamber mounted at the selection valve was adopted without the need of sophisticated lab-on-valve components. Coupled to flame atomic absorption spectrometry (FAAS), the potential of this lab-at-valve scheme is demonstrated for trace lead determination in environmental and biological water samples. A hydrophobic complex of lead with ammonium pyrrolidine dithiocarbamate (APDC) was formed on-line and subsequently extracted into an 80 μL plug of chloroform. The extraction procedure was performed by forming micro-droplets of aqueous phase into the plug of the extractant. All critical parameters that affect the efficiency of the system were studied and optimized. The proposed method offered good performance characteristics and high preconcentration ratios. For 10 mL sample consumption an enhancement factor of 125 was obtained. The detection limit was 1.8 μg L−1 and the precision expressed as relative standard deviation (RSD) at 50.0 μg L−1 of lead was 2.9%. The proposed method was evaluated by analyzing certified reference materials and applied for lead determination in natural waters and urine samples.  相似文献   

15.
A simple and selective method for the separation and preconcentration of cadmium in water samples based on solidified floating organic drop microextraction (SFODME) was developed. The cadmium ion in aqueous solution was converted to CdI42− and was then extracted with 160 μL of 1-undecanol containing cationic surfactant of methyltrioctylammonium chloride (0.2 mol/L). When the extraction was completed, the sample vial was cooled in an ice bath for 5 min. The solidified extract was transferred into a conical vial where it melted immediately. It was then diluted to 250 μL upon addition of ethanol, and 100 μL of it was analyzed by flow injection flame atomic absorption spectrometry (FI-FAAS).Factors that influence the extraction and ion pair formation, such as pH, concentration of iodide and methyltrioctylammonium chloride, extraction time, sample volume, and ionic strength were optimized. Under the optimized conditions, a preconcentration factor of 640, detection limit of 0.0079 μg/L and good relative standard deviation of ±5.4% at 5 μg/L were obtained. The procedure was applied to tap water, well water, and sea water; and accuracy was assessed through recovery experiment and independent analysis by graphite atomic absorption spectrometry. The accuracy was also evaluated through analyses of certified reference ore.  相似文献   

16.
An enrichment procedure for cadmium and lead after their solid phase extraction as dibenzyldithiocarbamate chelates on Dowex Optipore V-493 has been established prior to their flame atomic absorption spectrometric determinations. The analytical parameters including pH, amounts of dibenzyldithiocarbamate, sample volume, etc., were investigated. The effects of alkaline and earth alkaline ions and some metal ions on the retentions of analytes on Dowex Optipore V-493 resin were examined. Under the optimized conditions, the detection limits (3s, n = 21) for cadmium and lead were 0.43 μg L−1 and 0.65 μg L−1, respectively. The relative standard deviation (R.S.D.), and the recoveries of standard addition for this method were lower than 5% (n = 11) and 95-102%, respectively. Three standard reference samples (LGC 6010 Hard drinking water, NIST SRM 2711 Montana soil and GBW 07605 Tea) were introduced for accuracy and precision of analytical data. The proposed solid phase extraction system was successfully applied to the analysis of environmental samples.  相似文献   

17.
A novel on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system coupled to electrothermal atomic absorption spectrometry (ETAAS) was developed for metal preconcentration in micro-scale, eliminating the laborious and time consuming procedure of phase separation with centrifugation. The potentials of the system were demonstrated for trace lead and cadmium determination in water samples. An appropriate disperser solution which contains the extraction solvent (xylene) and the chelating agent (ammonium pyrrolidine dithiocarbamate) in methanol is mixed on-line with the sample solution (aqueous phase), resulting thus, a cloudy solution, which is consisted of fine droplets of xylene, dispersed throughout the aqueous phase. Three procedures are taking place simultaneously: cloudy solution creation, analyte complex formation and extraction from aqueous phase into the fine droplets of xylene. Subsequently the droplets were retained on the hydrophobic surface of PTFE-turnings into the column. A part of 30 μL of the eluent (methyl isobutyl ketone) was injected into furnace graphite for analyte atomization and quantification. The sampling frequency was 10 h−1, and the obtained enrichment factor was 80 for lead and 34 for cadmium. The detection limit was 10 ng L−1 and 2 ng L−1, while the precision expressed as relative standard deviation (RSD) was 3.8% (at 0.5 μg L−1) and 4.1% (at 0.03 μg L−1) for lead and cadmium respectively. The proposed method was evaluated by analyzing certified reference materials and was applied to the analysis of natural waters.  相似文献   

18.
A simple and fast preconcentration/separation dispersive liquid–liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L−1 and 3.3% for lead and 0.12 μg L−1 and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.  相似文献   

19.
Arpa Şahin C  Durukan I 《Talanta》2011,85(1):657-661
In this article, a new ligandless solidified floating organic drop microextraction (LL-SFODME) method has been developed for preconcentration of trace amount of cadmium as a prior step to its determination by flow injection-flame atomic absorption spectrometry (FI-FAAS). The methodology is based on the SFODME of cadmium with 1-dodecanol in the absence of chelating agent. Several factors affecting the microextraction efficiency, such as, pH, sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate and temperature were investigated and optimized. Under optimized experimental conditions an enhancement factor of 205 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 1.0-25.0 ng mL−1, the limit of detection (3s) was 0.21 ng mL−1 and the limit of quantification (10s) was 0.62 ng mL−1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL−1 cadmium was 4.7%. The developed method was successfully applied to the extraction and determination of cadmium in standard and several water samples and satisfactory results were obtained.  相似文献   

20.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号