首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method to measure ultrathin poly(o-phenylenediamine) (PPD) film electropolymerized on gold electrode in liquid was developed. It is based on the force versus distance curve (force curve) of atomic force microscopy (AFM). When 1-0.25 μm/s was chosen as the rising rate of the scanner, and 50% of the confidence interval (CI) as the qualifying threshold value, the thickness of the hydrated polymer film could be calculated. This result was compared with one obtained from an AFM image. A step-like electrode fabricated by a photolithographic process was used. The height difference of the electrode before and after the PPD coating was imaged in liquid, and then the real thickness, 19.6±5.2 nm, was obtained. The sample was also measured by estimating the transition range of the force curve of hydrated PPD film, and the thickness of the hydrated PPD film was determined to be 19.3±8.2 nm. However, the results calculated by integrating the electropolymerized charge for the oxidation process of o-phenylenediamine (o-PD) was only one-third as large as it was when using the two previously described methods. This indicated that the structure of hydrated PPD film might have been swollen.  相似文献   

2.
Gaomiaozi(GMZ) bentonite is regarded as the favorable candidate backfilling material for a potential repository in China.It is important to understand the diffusion behavior of 125 I in GMZ bentonite and compare the diffusion behavior in GMZ and other types of bentonite like MX-80,Avonlea,etc.Therefore,through-and out-diffusion experiments were conducted to obtain the effective diffusion coefficient(D e) and distribution coefficient(K d).A computer code named Fitting for diffusion coefficient(FDP) was used for the experimental data processing and theoretical modeling.At the dry density of GMZ bentonite from 1600-2000 kg/m 3,the D e values of 125 I were(2.4-20.4) × 10-12 m 2 /s and K d values were constants.At dry density above 1800 kg/m 3,the diffusion behaviors were almost the same,indicating that the anion exclusion was ineffective.Out-diffusion results showed that the species of 125 I may be changed during the diffusion processing.It was probably caused by some organic matters or reducing substances in GMZ bentonite.Since the main composition of bentonite is montmorillonite,similar diffusion parameters were obtained in GMZ and other types of bentonite.The relationship of D e and accessible porosity(acc) could be described by Archie’s law with exponent n = 1.2-2.8 for 125 I diffusion in bentonite,whereas n = 2.0 in GMZ bentonite.Furthermore,bentonite with the dry density of 1800 kg/m 3 was proposed as the backfilling materials used in the construction of high level radioactivity waste repository.  相似文献   

3.
α-Glucosidase was stereoscopically immobilized on the surface of Fe3O4 magnetic nanoparticles, which was modified with APTES, using GA as a cross-linker. This established method had a broad application prospect for screening of enzyme inhibitors.  相似文献   

4.
An enzyme electrode with a chemically-amplified response forl-lactate is constructed from an oxygen electrode and a layer containing immobilized lactate oxidase, to oxidizel-lactate, and lactate dehydrogenase, to regenerate thel-lactate. Regeneration enables oxygen to be consumed beyond the stoichiometric limitation, which results in an electrode response amplified 2–250 times according to the variation in the layer properties such as the Vmax and Km values of the immobilized enzymes and the thickness of the layer. The detection limit is as low as 5 × 10?9 M. An equation is derived to relate the rate of oxygen consumption in the layer to the experimental parameters; the equation successfully explains the experimental results.  相似文献   

5.
A tension cell device is described which is able to automatically collect outflow data and maintain constant loads (2 cm to 18 cm H2O) for flow systems involving water saturated, deformable porous media. Using the theoretical apparatus presently available for analyzing such systems, various flow parameters are obtained:k, permeability;a, coefficient of bulk compressibility; andD m, the material diffusivity. The flow parameters are a function of a variety of structural factors, which are controlled to a large extent by the nature of the forces operating between particles. Thus, the values fork, a andD m are applied to the problem of understanding structure in relatively dilute colloidal systems. Two different aluminum hydroxycarbonate materials are examined, each having a pH dependent surface charge but different in surface area. Because of their particular properties, structural differences between cohesive particle networks (occurring at the point of zero charge (pzc)) and swelling type systems (at pH values much different than pzc) may be examined.  相似文献   

6.
A copper hexacyanoferrate film was obtained on a modified electrode prepared by self-assembly of 3-mercaptopropyltrimethoxysilane on a gold surface. The film thickness was controlled using a layer-by-layer technique to tune the electrocatalytic properties of the electrode. Two electrodes with different hexacyanoferrate film thicknesses were prepared via three immersions (AuS/CuHCF3) and six immersions (AuS/CuHCF6) of the film in the precursor solutions. Cyclic voltammetry data were obtained to determine the adequate film thickness. Scanning electron microscopy images showed a roughness increase due to the growth of the film thickness at the electrode surface. Electrochemical impedance spectroscopy showed distinct behavior for the two electrodes prepared; while diffusion and charge transfer processes can be observed in both electrodes, an additional capacitive process at intermediary frequencies was observed for the AuS/CuHCF6 electrode. The charge transfer resistance (R ct) for the AuS/CuHCF3 electrode (19.6 Ω cm2) was lower than for AuS/CuHCF6 (27.9 Ω cm2) due to the hexacyanoferrate film thickness, since the charge transfer process demands the simultaneous diffusion of K+ into the surface. Cyclic voltammetry was used to evaluate the application of the AuS/CuHCF3 electrode as an electrochemical sensor, revealing a linear correlation for hydrazine concentrations.  相似文献   

7.
The phenomenon of light-dependent O2 uptake by monolayers of hydrated chlorophyll a oligomer deposited by the Langmuir-Blodgett technique on an SnO2 optically transparent electrode has been observed. Spectra of cathodic photocurrents coincided with the absorption spectrum of hydrated oligomer of chlorophyll a. In the presence of an artificial electron donor, hydroquinone, and an oxygen electron acceptor, both the cathodic and the anodic photocurrent caused by dry and wet chlorophyll a molecules of monolayer were measured under illumination in the range 400–800 nm. The effects of electrode potentials and redox reagents on the magnitude of solar energy conversion by the chlorophyll a monolayer at the optically transparent electrode are discussed. ESR and circular dichroism spectra show that hydrated oligomer of chlorophyll a consists of six molecules of chlorophyll a bonded with water molecules.  相似文献   

8.
A facile preparation strategy was proposed for preparation of compact zeolite LTA membranes on polyethyleneimine(PEI) modified substrates without seeding.Through the functionalization of substrates by using PEI,compact LTA membranes can be formed on various kinds of substrates.A well-intergrown and phase-pure LTA membrane with a thickness of about 3.0 μm is successfully prepared on the a-Al_2 O_3 disk after crystallization for 24 h at 60℃.Besides LTA membrane,wellintergrown zeolite FAU membranes can also be formed on PEI-modified a-Al_2 O_3 substrates,suggesting the universality of this strategy.The zeolite LTA membranes synthesized on PEI-modified a-Al_2 O_3 tubes we re evaluated fo r the separation of alcohols/water mixture through pervaporation.The as-synthesized zeolite LTA membranes display high pervaporation performances.For the separation of 10 wt% isopropanol/water solution at 90℃,a high separation factor of44991 and a water flux of 1.73 kg m ~2 h ~1 are achieved.  相似文献   

9.
The combination of series of measurements of band broadening made with the peak parking (PP) method, using successively an open capillary tube and a HPLC column, gives a convenient procedure for the measurement of the molecular diffusivity (Dm) of compounds in solutions, of their axial dispersion coefficient (Dax,m) in chromatographic columns, and of the tortuosity or obstructive factor of the column bed. The molecular diffusivity measured for benzene in methanol was in excellent agreement with literature data. The ratio of the axial dispersion coefficient to this diffusivity gives the obstructive factor (γm) of the packed bed, which was 0.74 for the column used. The values of Dm in other solutions were obtained from the Dax,m values measured by the PP method, by correcting the Dax,m values with the γm value. The Dm values determined by this method were in good agreement with those previously reported or estimated using literature correlations. These results showed that the PP method is effective for the experimental measurement of Dm.  相似文献   

10.
By the regression analysis of dependences of the adsorption potential shift (E ads) on the electrode charge in systems (Tl-Ga)/[NMF + 0.1m M KI + 0.1(1 ? m) M KClO4], (Tl-Ga)/[NMF + 0.1m M KBr + 0.1(1 ? m) M KClO4], and (Tl-Ga)/[NMF + 0.1m M KCl + 0.1(1 ? m) M KClO4] with the following m fractions of the surface-active anion: 0.05, 0.1, 0.2, 0.5, and 1, the adsorption parameters are calculated in terms of two models based on the Frumkin isotherm both considering the free adsorption energy as a quadratic function of the electrode charge, where one model takes into account the diffuse layer and the other ignores it. It is shown that for the studied electrode charges q ≤ 2 μC/cm2, both models provide equal accuracy in calculating E ads in the systems under study.  相似文献   

11.
《Electroanalysis》2003,15(20):1577-1583
Laccase enzymes from two different sources, namely, tree laccase from Rhus vernicifera and fungal laccase from Coriolus hirsutus were used for the development of biosensor for catechol. Laccase was immobilized onto the amine terminated thiol monolayers on gold surface by glutaraldehyde coupling. From the different thiol monolayers investigated, cystamine was found to be optimal with respect to sensitivity, stability, reproducibility, and other electrochemical properties of the enzyme electrode. Linear calibration in the range between 1 and 400 μM for catechol was obtained for fungal laccase covalently coupled on the electrode surface. The kinetic parameters determined using the Lineweaver‐Burk and Eadie‐Hofstee plots were Km=0.65 mM and Vmax=24.5 μA for fungal laccase compared to Km=5.4 mM and Vmax=6.6 μA for tree laccase on cystamine monolayer. The electrode showed good stability for 1 month without loosing appreciable activity when stored dry in a refrigerator at ?20 °C.  相似文献   

12.
In this work, urea detection techniques based on the pH sensitivity of CdSe/ZnS QDs were developed using three types of sol-gel membranes: a QD-entrapped membrane, urease-immobilized membrane and double layer consisting of a QD-entrapped membrane and urease-immobilized membrane. The surface morphology of the sol-gel membranes deposited on the wells in a 24-well microtiter plate was investigated. The linear detection range of urea was in the range of 0-10 mM with the three types of sol-gel membranes. The urea detection technique based on the double layer consisting of the QD-entrapped membrane and urease-immobilized membrane resulted in the highest sensitivity to urea due to the Michaelis-Menten kinetic parameters. That is, the Michaelis-Menten constant (Km =2.0745 mM) of the free urease in the QD-entrapped membrane was about 4-fold higher than that (Km =0.549 mM) of the immobilized urease in the urease-immobilized membrane and about 12-fold higher than that (Km =0.1698 mM) of the immobilized urease in the double layer. The good stability of the three sol-gel membranes for urea sensing over 2 months showed that the use of sol-gel membranes immobilized with QDs or an enzyme is suitable for biomedical and environmental applications.  相似文献   

13.
For the first time, the electrochemical synthesis of gold nanostructures was done at the surface of carbon paste electrode. This device was used as a simple and sensitive electrochemical sensor for measurement of pyridoxine (Vitamin B6, VB6). The diffusion coefficient (D) and the kinetic parameters such as electron transfer coefficient (α) and catalytic rate constant (k) for VB6 were also determined using electrochemical approaches. The cyclic voltammetry method showed VB6 oxidation reaction with irreversible characteristics was diffusion-controlled at low scan rates. Using differential pulse voltammetry (DPV), the peak current was linearly dependent on VB6 concentration in the ranges of 1.9–110.8 and 110.8–257.0 μM, with detection limit of 74.0 nM, respectively. Results showed there is no interference of other vitamins in oxidation of VB6. DPV was used to quantify of VB6 in some real samples by the standard addition method. The modified electrode showed good sensitivity and stability.  相似文献   

14.
The adsorption parameters for systems Ga/[NMF + 0.1m M KCl + 0.1(1 ? m) M KClO4], Ga/[NMF + 0.1m M KBr + 0.1(1 ? m) M KClO4], and Ga/[NMF + 0.1m M KI + 0.1(1 ? m) M KClO4] are calculated by using the regression analysis of the adsorption potential shift vs. electrode charge dependences for the following molar fractions m of the surface-active anion: 0.05, 0.1, 0.2, 0.5, and 1 within the framework of two models. The models are based on the Frumkin isotherm with the free adsorption energy dependent on the electrode charge, of which one model takes into account the diffuse layer and the other ignores it. It is shown that for electrode charges q ?? 16 ??C/cm2, both models provide equal accuracy; however, for higher q, preference should be given to the model that takes into account the contribution of the double layer diffuse part.  相似文献   

15.
A hydrophilic non-stoichiometric epoxy network was prepared by end-linking reaction of α,ω-diamino terminated poly(oxypropylene)-b-poly(oxyethylene)-b-poly(oxypropylene) (POP-POE-POP) and diglycidyl ether of Bisphenol A propoxylate (PDGEBA) at the excess of amino groups. Series of epoxy hydrogels swollen to various degrees was prepared by swelling of the epoxy network in D2O and solutions of inorganic salt (KNO3) in D2O, respectively, and investigated by small-angle neutron scattering (SANS). Degree of swelling was controlled in two ways: by partial evaporation of the solvent and by KNO3 concentration in the swelling solution. Nanophase separated structure of all hydrogels was confirmed by SANS. Scattering data were fitted to the Teubner-Strey model assuming bicontinuous locally lamellar structure of the hydrogels. Changes in SANS profiles induced by the presence of KNO3 in swelling solutions reflect a refinement of the nanophase separated structure of hydrogels caused by improvement of POE-D2O interaction by means of breakage of deuterium-bonded structure of D2O by nitrate anions.  相似文献   

16.
A novel type of glucose sensor was fabricated based on a glucose oxidase (GOD)-N,N-dimethtylformamide (DMF)-[BMIm][BF4] composites modified three-dimensional ordered macroporous (3DOM) gold film electrode. The immobilized GOD exhibits a pair of well-defined reversible peaks in 50 mM pH 7.0 phosphate buffer solutions (PBS), which could be attributed to the redox of flavin adenine dinucleotide (FAD) in GOD. The research results show that ionic liquid ([BMIm][BF4]), DMF and 3DOM gold film are crucial for GOD to exhibit a pair of stable and reversible peaks. It is believed that the large active area of 3DOM gold film can increase the amount of immobilized GOD. Simultaneously, the application of IL enhances the stability of GOD and facilitates the electron transfer between GOD and the electrode. The synergetic effect of DMF can help the GOD to maintain its bioactivity better. GOD immobilized on the electrode exhibits the favorable electrocatalytic property to glucose, and the prepared sensor has a linear range from 10 to 125 nM with a detection limit of 3.3 nM at a signal-to-noise ratio of 3σ. The apparent K m (Michaelis- Menten constant) for the enzymatic reaction is 0.018 mM.  相似文献   

17.
The anodic formation of Ag(I) oxide nanofilms on polycrystalline silver and Ag–Au alloys as well as on low-index single crystals of silver in 0.1?М KOH was examined. By the methods of photocurrent i ph and photopotential E ph measurements, the n-type conductivity of Ag2O film was established. Since the film (6–120 nm) is thinner than the space charge region, the dependence of photocurrent and photopotential appears on the film thickness L: i ph ~L and E ph ~L 2. The transition from polycrystalline silver to single crystals as well as the addition of a small amount of gold (X Au?≤?4 at.%) into the silver lattice decreases the degree of deviation from the stoichiometric composition Ag2O. The parameters of Ag2O film (optical absorption coefficient α, donor defects concentration N D, space charge region W, and Debye’s length of screening L D) depend on the index of a crystal face of silver, volume concentration of gold X Au in the alloy, and film-formation potential E. At Е?=?0.52 V, the sequences of variation of these parameters correlate with the reticular density sequence. The growth of the potential disturbs these sequences. The band gap in Ag2O formed on Agpoly, Aghkl, and Ag–Au is 2.32, 2.23, and 2.19 eV. Flat band potential in Ag(I) oxide, formed on Agpoly in 0.5 M KOH is 0.37 V. The appearance of the clear dependence between the state of the oxide/metal interface and the structure-sensitive parameters of semiconductor Ag(I) oxide phase allows considering the anodic formation of Ag2O on Ag as a result of the primary direct electrochemical reaction, not of the precipitation from the near-electrode layer.  相似文献   

18.
A phosphate functionalized cysteamine self-assembled monolayer based on gold electrode is designed for uranyl ion (UO22+) detection. The response of the modified electrode is studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The EIS data are approximated using constant phase element (CPE) model from which kinetic and analytical parameters are evaluated. Uranyl ion is recognized based on blocking effect against charge transfer between p-benzoquinone as a probe and the modified electrode. This effect is detected from linear variation of charge transfer resistance (Rct) as a function of UO22+ concentration. From the analysis of the EIS data and approximated parameters, a method is developed for UO22+ determination based on impedimetric measurements.  相似文献   

19.
A novel composite was fabricated through dispersing multiwalled carbon nanotubes (MWNTs) in gold nanoparticle (GPs) colloid stabilized by chitosan and ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium tetrafluoroborate, BMIMBF4). Transmission electron microscopy (TEM) experiment showed that the GPs highly dispersed on the MWNTs probably due to the electrostatic interaction among GPs, MWNTs and the imidazolium cation of BMIMBF4. X‐ray photoelectron spectroscopy (XPS) indicated that thus‐formed gold nanostructure was mediated by BMIMBF4. When glucose oxidase (GOD) was immobilized on the composite (MWNTs‐GPs) its ultraviolet‐visible absorption spectrum kept almost unchanged. The immobilized GOD coated glassy carbon electrode (GOD/MWNTs‐GPs/GC) exhibited a pair of well‐defined peaks in 0.10 M pH 7.0 phosphate buffer solution (PBS), with a formal potential of ?0.463 V (vs. SCE). The electrochemical process involved two‐electron transfer. The electron transfer coefficient was ca.0.56 and the electron transfer rate constant was 9.36 s?1. Furthermore, the immobilized GOD presented good catalytic activity to the oxidation of glucose in air‐saturated PBS. The Km and Im values were estimated to be 13.7 μM and 0.619 μA. The GOD/MWNTs‐GPs/GC electrode displayed good stability and reproducibility.  相似文献   

20.
By the regression analysis of dependences of the adsorption potential shift (E ads) on the electrode charge in systems (In-Ga)/[NMF + 0.1m M KCl + 0.1(1 - m) M KClO4, (In-Ga)/[NMF + 0.1m M KBr + 0.1(1 ? m) M KClO4], and (In-Ga)/[NMF + 0.1m M KI + 0.1(1 - m) M KClO4] with the following m fractions of the surface-active anion: 0.05, 0.1, 0.2, 0.5, and 1, the adsorption parameters are calculated in terms of two models both based on the Frumkin isotherm and considering the free adsorption energy as a function of the electrode charge, where one model takes into account the diffuse layer and the other ignores it. It is shown that for the studied electrode charges q ≤ 10 μC/cm2, both models provide equal accuracy in calculating E ads and the differential capacitance (C) in the systems under study. However, for determination of adsorption parameters, the regression analysis of E ads vs. q curves has several advantages over the analogous analysis of C vs. q curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号