首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of 3(5)-methyl-5(3)-trifluoromethylpyrazole (I) with chloroform leads to a complex mixture of compounds. The main components are {bis[(5-methyl-3-trifluoromethyl)pyrazol-1-yl](3-methyl-5-trifluoromethyl)pyrazol-1-yl}methane, bis{[(3-methyl-5-trifluoromethyl)pyrazol-1-yl](5-methyl-3-trifluoromethyl)-pyrazol-1-yl}methane, and tris[(3-methyl-5-trifluoro-methyl)pyrazol-1-yl]methane. The structure of isomeric substances was proved by XRD method.  相似文献   

2.
The synthesis of tris[3-(6-carboxypyridin-2-yl)pyrazol-1-yl]methane is described in a linear multi-step protocol. The pyridyl-pyrazolyl arms are first constructed before being condensed with chloroform. Careful study of the condensation reaction shows the presence of an isomeric form of the tris(pyrazolyl)methane derivative in which one of the pyrazolyl substituents is linked through the nitrogen atom at the 2 position of the pyrazol. After acid-catalysed isomerisation to the desired isomer, the intermediate compound was subjected to a carboalkoxylation reaction and a subsequent hydrolysis. These are some rare examples of reactions directly occurring on the tris(pyrazolyl)methane platforms.  相似文献   

3.
Transition Metal Chemistry - Bis(benzotriazol-1-yl)phenylmethane CHPh(btz)2 and tris(benzotriazol-1-yl)methane CH(btz)3 were used as N-donor ligands to prepare luminescent heteroleptic copper(I)...  相似文献   

4.
Steric crowding of the 3-position of tris(pyrazolyl)borate and -methane ligands has produced tetrahedral metal complexes with controlled reactivity. As an alternative, we propose to incorporate the tris(pyrazolyl)methane chelate in a macrobicyclic structure in order to create a cavity with well-defined dimensions and shape. Acid-catalyzed equilibration of excess of the new pyrazole 3-(1H-pyrazol-3-yl)benzenemethanethiol acetate with HC(3,5-Me(2)pz)(3) followed by hydrolysis affords a functionalized tris(pyrazolyl)methane, which reacts with 1,3,5-tris(bromomethyl)benzene in K(2)CO(3)/DMF to give the title compound. [structure: see text]  相似文献   

5.
Journal of Structural Chemistry - Paramagnetic chemical shifts in the iron(II) tris(pyrazole-1-yl)methane [Fe(HC(Pz)3)2](C10H7SO3)2 complex exhibiting spin crossover were studied by 1H NMR at...  相似文献   

6.
A mild process for the conversion of pyridones to the corresponding pyridines by palladium catalyzed ammonium formate hydrogenolysis of their (1-phenyltetrazol-2-yl) ethers is described.  相似文献   

7.
We have obtained 5-phenyltetrazol-2-ylalkanoic acids and their derivatives containing terminal nitrile, amide, and tetrazol-5-yl groups. Tetrazolylalkanoic acids with two (pK a 4.93) and three (pK a 5.45) bridging methylene groups are weaker acids than the corresponding ditetrazoles pK a 4.68 and 5.29 respectively). However, the acidity of 5-phenyltetrazol-2-ylacetic acid (pK a 3.12), is higher than acidity of the corresponding ditetrazole (pK a 3.27).  相似文献   

8.
Journal of Structural Chemistry - New coordination compounds of iron(II) with tris(pyrazol-1-yl)methane (HC(pz)3) containing dicyanoargentate and dicyanoaurate ions of the composition...  相似文献   

9.
Reactions taking place with cleavage of the C-Fur bond are examined. It was established that disproportionation in two directions, leading to the formation of tris(5-methyl-2 furyl)methane, takes place when 3, 4dimethoxyphenylbis(5-methyl-2 furyl)methane is boiled in an acidic medium. The acid-catalyzed reaction of 5-methylfurfural with ethylene glycol leads to the formation of either 2-(S-methyl-2 fury!)-1,3-dioxolane or tris(S-methyl-2 furyl)methane, depending on the catalyst. The treatment of 2-(S-methyl-2 fury!)-1,3-dioxolane or gem-tris(5. methyl-2 furyl)ethane with triryl perchlorate leads to tris(5-methyl-2 furyl)carbenium or bis(5-methyl-2-furyl)methylcarbenium perchlorates respectively.For Comminication 11, see [1]Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 175–179, February, 1996.  相似文献   

10.
Three copper polypyridyl complexes were examined as electrocatalysts for the oxygen reduction reaction (ORR): a Cu-N(3) complex, [Cu-[tris(6-methylpyridin-2-yl)methane]-(NCMe)]PF(6) (1); a related Cu(2)N(6) derivative, [Cu(2)-[1,2-bis(6-(bis(6-methylpyridin-2-yl)methyl)pyridin-2-yl)ethane]-(NCMe)(2)](PF(6))(2) (2); and the CuN(4) species [Cu-[tris(pyridin-2-ylmethyl)amine]](ClO(4))(2) [3](ClO(4))(2). Compared to other copper complexes, [3](ClO(4))(2) exhibits the highest reported ORR onset potential for a Cu complex of 0.53 V vs reversible hydrogen electrode at pH 1. The Cu(2)N(6) hemocyanin model is more active than the CuN(3), but both are less active than the CuN(4) complex. The results indicate that copper polypyridyl complexes are promising cathode catalysts for ORR.  相似文献   

11.
The new dibranched, heterocyclic "push-pull" chromophores bis{1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane (1), 1-(pyrid-4-yl)-2-(N-methyl-5-formylpyrrol-2-yl)ethylene (2), {1-(N-methylpyridinium-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}{(1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane (3), N-methyl-2-[1-(N-methylpyrid-4-yl)ethen-2-yl]-5-[pyrid-4-yl]ethen-2-yl]pyrrole iodide (4), bis{1-(N-methyl-4-pyridinio)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane iodide (5), and N-methyl-2,5-[1-(N-methylpyrid-4-yl)ethen-2-yl]pyrrole iodide (6) have been synthesized and characterized. The neutral (1 and 2) and monomethyl salts (3 and 4) undergo chemisorptive reaction with iodobenzyl-functionalized surfaces to afford chromophore monolayers SA-1/SA-2 and SA-3/SA-4, respectively. Molecular structures and other physicochemical properties have been defined by (1)H NMR, optical spectroscopy, and XRD. Thin-film characterization by a variety of techniques (optical spectroscopy, specular X-ray reflectivity, atomic force microscopy, X-ray photoelectron spectroscopy, and angle-dependent polarized second harmonic generation) underscore the importance of the chromophore molecular architecture as well as film growth method on film microstructure and optical/electrooptic response.  相似文献   

12.
Photodecomposition of tris(benzotrizol-1-yl)methane (1) in benzene gives [1-benzotryazol-1-yl-methylidene]-biphenyl-2-ylamine (2) resulting from the loss of the benzotriazolyl radical and nitrogen followed by addition of benzene. Elimination of the second benzotriazolyl radical from 2 provides the biphenyl-2-ylmethyleneamine radical, which affords phenantridine (3) after ring closure. In contrast, the photolysis of 1 in methanol gives a high yield of benzotriazole (4).  相似文献   

13.
Reactions of quinazoline 1 with indole, pyrogallol and 1-phenyl-3-methylpyrazol-5-one in the presence of acid led to C-4 adducts 2, 3 and 5. Adduct 4 is formed by heating 1 with 1,3-dimethylbarbituric acid without acid catalysis. 1-Phenyl-3-methylpyrazol-5-one reacts with 1 without acid catalysis to form dipyrazolylmethane 6. 4-Chloroquinazoline 8 reacts with 1-phenyl-3-methylpyrazol-5-one to form 4-(1-phenyl-3-methyl-5-oxopyrazol-4-yl) quinazoline 9 and dipyrazolylmethane 6. Heating 8 with 2-methylindole leads to the formation of 4-(2-methylindol-3-yl) quinazoline 10 and tris(2-methylindol-3-yl)methane 11.  相似文献   

14.
The studies concerning coordination compounds of various salts of iron(II) with tris(pyrazol-1-yl)methane derivatives (HC(pz)3) are discussed. The results of a number of studies on the synthesis and investigation of the homo- and heteroligand iron(II) complexes with tris(3,5- dimethylpyrazol-1-yl)methane (HC(3,5-Me2pz)3) are considered. The study of the temperature dependence μeff (T) showed that the spin crossover (SCO) 1A1?5T2 observed in a series of the compounds discussed is accompanied by thermochromism (color change pink (purple) ? colorless). Specific features of the SCO and their dependence on the outer-sphere anion in the iron(II) complexes are discussed. The data of the recently published work devoted to the synthesis of the iron(II) complexes with three N-substituted HC(pz)3 derivatives (general formula xL, where x = H, CH2C6H5 (Bn) and p-SO3C6H4CH3 (Ts)) are considered.  相似文献   

15.
The rhenacarborane salt Cs[Re(CO)3(eta5-7,8-C2B9H11)] (1) has been used to synthesize the tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Ph2P(CH2)2PPh2]] (3) where two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments have been shown by X-ray crystallography to be bridged by a single 1,2-bis(diphenylphosphino)ethane ligand. Reaction of 1 with Ag[BF4] in the presence of the ligands bis- or tris(pyrazol-1-yl)methane yields the complexes [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-CH2(C3H3N2-1)2]] (4) or [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-kappa1,kappa2-CH(C3H3N2-1)3]] (5), respectively. From X-ray studies, the former comprises a Re-Ag bond bridged by the carborane cage and with the bis(pyrazol-1-yl)methane coordinating the silver(I) center in an asymmetric kappa(2) mode. Complex 5 was unexpectedly found to contain a tris(pyrazol-1-yl)methane bridging two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments in a kappa1,kappa2 manner. Treatment of 1 with Ag[BF4] in the presence of 2,2'-dipyridyl and 2,2':6',2' '-terpyridyl yields [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-(C5H4N-2)(2)]] (6) and [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa3-C5H3N(C5H4N-2)2-2,6]] (7). The X-ray structure determination of 7 revealed an unusual pentacoordinated silver(I) center, asymmetrically ligated by a kappa3-2,2':6',2' '-terpyridyl molecule. The same synthetic procedure using N,N,N',N'-tetramethylethylenediamine gave a tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Me2N(CH2)2NMe2]2] (8) which is believed, in the solid state, to be bridged between the silver atoms by two of the diamine molecules. The salt 1 with Ag[BF4] in the absence of any added ligand gave the tetrameric cluster [ReAg[mu-5,6,10-(H)3-eta5-7,8-C2B9H8](CO)3]4 (9) where, in the solid state, four [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] units are held together by long interunit B-H right harpoon-up Ag bonds.  相似文献   

16.
The total energies of reactants, products, and transition states of nucleophilic substitution reactions in protonated tris(indol-3-yl)methane have been assessed with the semiempirical AM1 method and the theory of functional density B3LYP/6-31(d) method. The results of calculations indicated that the reactions proceed by an S N 1-like mechanism, since the activation barrier for it is significantly lower than in the case of the S N 2-like mechanism.  相似文献   

17.
不对称取代双(吡唑)甲烷VIB羰基金属化合物的合成及表征   总被引:1,自引:0,他引:1  
3-苯基吡唑与二溴甲烷在相转移催化下反应,得到(3-苯基吡唑-5'-苯基吡唑)甲烷(1)和双(3-苯基吡唑)甲烷(2)的混合物.当该混合配体与M(CO)6(M=Cr,Mo,W)在光照下反应时,分离得到了不对称取代的(3-苯基吡唑-5'-苯基吡唑)甲烷四羰基铬(3),钼⑷和钨(5).用X-射线衍射测定了化合物5的晶体结构.结果表明,该晶体属于单斜晶系,P2(1)/n空间群,a=1.7976(7) rnn,b=1.3210(5) nm, c=1.8681(7) nm;β=98.293(8)°, V=4.390(3) nm3, Z=8,最终结构偏离因子[I>2σ(I)]=0.0516, Rw=0.0898, GOF=0.879.两个苯基分别处于两个吡唑的3位及5'位.  相似文献   

18.
《Tetrahedron: Asymmetry》2006,17(22):3063-3066
A stereocontrolled synthesis of the methyl ester of (2S)-3-amino-2-((4′S)-2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)propanoic acid from d-glyceraldehyde is described for the first time. This method involves the stereoselective Michael addition of the lithium salt of tris(phenylthio)methane to (S)-2,2-dimethyl-4-((E)-2-nitrovinyl)-1,3-dioxolane followed by hydrolysis of the resulting (4S)-2,2-dimethyl-4-((2′S)-3′-nitro-1′,1′,1′-tris(phenylthio)propan-2′-yl)-1,3-dioxolane to (2S)-methyl 2-((4′S)-2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)-3-nitropropanoate, which was finally reduced to the target compound. A similarly stereocontrolled transformation of l-glyceraldehyde into (2R)-methyl 3-amino-2-((4′R)-2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)propanoate is also described.  相似文献   

19.
A series of homoleptic complexes of hexacoordinate cobalt(II) and copper(II) complexes with 3,5-disubstituted homo- and heteroscorpionate tris(pyrazolyl)borate anionic ligands (Tp′) were synthesized, i.e. bis[hydrotris(3-phenyl,5-methylpyrazol-1-yl)borato]cobalt(II), bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]cobalt(II) and bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]copper(II) and their structures were elucidated crystallographically. The complexes were also formed spontaneously during attempted metathesis of the corresponding Tp′M(NCS) complexes into Tp′M(OOCCH(OH)CH3) complexes. In the case of the analogous conversion applied for the thiocyanato [hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3,5-dimethylpyrazol-1-yl)boratocobalt(II) complex with sodium carboxylates (lactate, pyruvate and 2-hydroxybutyrate), the cross-transfer of pyrazolyl residues between starting anionic ligands was observed resulting in formation of bis-ligand homo- and heteroleptic Tp′CoTp″ complexes, where Tp′, Tp″ were tris(pyrazolyl)borates composed of n 3(5)-phenyl,5(3)-methylpyrazolyl and (3−n) 3,5-dimethylpyrazolyl residues (n=0–3) identified by mass spectrometry. Metathesis of thiocyanate in thiocyanato hydrotris(3-phenyl,5-methylpyrazol-1-yl)boratocobalt(II) into pyruvate led to the isolation of stable the pyruvato hydrotris(3-phenyl,5-methylpyrazol-1-yl)boratocobalt(II) complex, the structure of which was determined crystallographically. The Tp′ ligands are η3 coordinated to metal ions in every case, whereas the pyruvate anion is coordinated through carboxylate and carbonyl oxygen atoms to the cobalt center. Two rotational isomers distinguishable by 1H NMR spectroscopy for the hexacoordinate bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]cobalt(II) complex were detected in solution.  相似文献   

20.
The reaction of 5-methylsulfonyl-1-phenyltetrazole with pentaerythritol in acetonitrile in the presence of sodium hydroxide gave tetrakis(1-phenyltetrazol-5-yloxymethyl)methane. Sulfur-containing analog of the latter was obtained by alkylation of 1-phenyl-4,5-dihydrotetrazole-5-thione with 1,3-dibromo-2,2-bis-(bromomethyl)propane. Nitration of the resulting polytetrazoles afforded the corresponding tetrakis(p-nitrophenyl) derivatives which can be used in the synthesis of tetrazole-containing dendrimers according to the divergent scheme.Translated from Zhurnal Organicheskoi Khimii, Vol. 40, No. 9, 2004, pp. 1366–1368.Original Russian Text Copyright © 2004 by Artamonova, Zatsepina, Koldobskii.For communication XLVI, see [1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号