首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Configurations of point vortices on the sphere are considered in which all vortex velocities are zero. A sharp upper bound for the number of equilibria lying on a great circle is found, valid for generic circulations, and some unusual equilibrium configurations with a free real parameter are described. Equilibria of rings (vortices evenly spaced along circles of latitude) are also discussed. All equilibrium configurations of four vortices are determined.   相似文献   

2.
Relative equilibrium configurations of point vortices in the plane can be related to a system of polynomial equations in the vortex positions and circulations. For systems of four vortices the solution set to this system is proved to be finite, so long as a number of polynomial expressions in the vortex circulations are nonzero, and the number of relative equilibrium configurations is thereby shown to have an upper bound of 56. A sharper upper bound is found for the special case of vanishing total circulation. The polynomial system is simple enough to allow the complete set of relative equilibrium configurations to be found numerically when the circulations are chosen appropriately. Collapse configurations of four vortices are also considered; while finiteness is not proved, the approach provides an effective computational method that yields all configurations with a given ratio of velocity to position.   相似文献   

3.
We study the motion of point vortices on a sphere and, using the methods of linear algebra, find the symmetric configurations of relative equilibrium. Furthermore, we give a catalog of symmetric configurations based on regular polyhedrons. Finally, we investigate the stability of the equilibrium configurations found.  相似文献   

4.
An exact method is presented for obtaining uniformly translating distributions of vorticity in a two-dimensional ideal fluid, or equivalently, stationary distributions in the presence of a uniform background flow. These distributions are generalizations of the well-known vortex dipole and consist of a collection of point vortices and an equal number of bounded vortex sheets. Both the vorticity density of the vortex sheets and the velocity field of the fluid are expressed in terms of a simple rational function in which the point vortex positions and strengths appear as parameters. The vortex sheets lie on heteroclinic streamlines of the flow. Dipoles and multipoles that move parallel to a straight fluid boundary are also obtained. By setting the translation velocity to zero, equilibrium configurations of point vortices and vortex sheets are found.  相似文献   

5.
Consider the problem of three point vortices (also called Helmholtz’ vortices) on a plane, with arbitrarily given vorticities. The interaction between vortices is proportional to 1/r, where r is the distance between two vortices. The problem has 2 equilateral and at most 3 collinear normalized relative equilibria. This 3 is the optimal upper bound. Our main result is that the above standard statements remain unchanged if we consider an interaction proportional to r b, for any b < 0. For 0 < b < 1, the optimal upper bound becomes 5. For positive vorticities and any b < 1, there are exactly 3 collinear normalized relative equilibria. The case b = −2 of this last statement is the well-known theorem due to Euler: in the Newtonian 3-body problem, for any choice of the 3 masses, there are 3 Euler configurations (also known as the 3 Euler points). These small upper bounds strengthen the belief of Kushnirenko and Khovanskii [18]: real varieties defined by simple systems should have a simple topology. We indicate some hard conjectures about the configurations of relative equilibrium and suggest they could be attacked within the quasi-polynomial framework.  相似文献   

6.
The method of polynomials is used to construct two families of stationary point vortex configurations. The vortices are placed at the reciprocals of the zeroes of Bessel polynomials. Configurations that translate uniformly, and configurations that are completely stationary, are obtained in this way.  相似文献   

7.
In this paper we study the problem of constructing and classifying stationary equilibria of point vortices on a cylindrical surface. Introducing polynomials with roots at vortex positions, we derive an ordinary differential equation satisfied by the polynomials. We prove that this equation can be used to find any stationary configuration. The multivortex systems containing point vortices with circulation Γ1 and Γ22 = ?μΓ1) are considered in detail. All stationary configurations with the number of point vortices less than five are constructed. Several theorems on existence of polynomial solutions of the ordinary differential equation under consideration are proved. The values of the parameters of the mathematical model for which there exists an infinite number of nonequivalent vortex configurations on a cylindrical surface are found. New point vortex configurations are obtained.  相似文献   

8.
9.
Point vortex equilibria in which the vortices are arranged in clusters are examined. The vortex velocities in these configurations are all equal. Necessary conditions for their existence are established that relate the circulations within the clusters to the cluster radius. A method for generating these configurations by singular continuation is proved to be valid for the generic case. Finally, a partial analysis of exceptional cases is given and their connection to the existence of parametrized families of equilibria is described.  相似文献   

10.
The two-dimensional Riemann problem with polytropic gas is considered. By a restriction on the constant states of each quadrant of the computational domain such that there is only one planar centered wave connecting two adjacent quadrants, there are nineteen genuinely different initial configurations of the problem. The configurations are numerically simulated on a fine grid and compared by the 5th-order WENO-Z5, 6th-order WENO-??6, and 7th-order WENO-Z7 schemes. The solutions are very well approximated with high resolution of waves interactions phenomena and different types of Mach shock reflections. Kelvin-Helmholtz instability-like secondary-scaled vortices along contact continuities are well resolved and visualized. Numerical solutions show that WENO-??6 outperforms the comparing WENO-Z5 and WENO-Z7 in terms of shock capturing and small-scaled vortices resolution. A catalog of the numerical solutions of all nineteen configurations obtained from the WENO-??6 scheme is listed. Thanks to their excellent resolution and sharp shock capturing, the numerical solutions presented in this work can be served as reference solutions for both future numerical and theoretical analyses of the 2D Riemann problem.  相似文献   

11.
This work investigates properties of a smectic C* liquid crystal film containing defects that cause distinctive spiral patterns in the film?s texture. The phenomena are described by a Ginzburg–Landau type model and the investigation provides a detailed analysis of minimal energy configurations for the film?s director field. The study demonstrates the existence of a limiting location for the defects (vortices) so as to minimize a renormalized energy. It is shown that if the degree of the boundary data is positive then the vortices each have degree +1 and that they are located away from the boundary. It is proved that the limit of the energies for a sequence of minimizers minus the sum of the energies around their vortices, as the G–L parameter ε tends to zero, is equal to the renormalized energy for the limiting state.  相似文献   

12.
Using the technique of asymptotic expansions, we calculate trajectories of three point vortices in the vicinity of stable equilateral or collinear configurations. We show that in an appropriate rotating coordinate system each vortex moves in an elliptic orbit. The orbits of the vortices have equal eccentricities. The angle and ratio between the major axes of any two orbits have a simple analytic representation.   相似文献   

13.
On the equilibrium position of Ginzburg Landau vortices   总被引:3,自引:0,他引:3  
We study a few problems related to superconducting vortices. Our main concern is the stable equilibrium distribution of them. Our starting point is the asymptotic form of the Ginzburg Landau energy functional with a large Ginzburg Landau parameter. We consider in particular the interaction of the vortices with an applied magnetic field, and the effects of impurities on the vortex locations.  相似文献   

14.
The isolation and nondegeneracy of constrained extrema arising in geometric problems and mathematical models of electrostatics are studied. In particular, it is proved that a convex concyclic configuration of polygonal linkages is a nondegenerate maximum of the oriented area. Geometric properties of equilibrium configurations of point charges with Coulomb interaction on convex curves are considered, and methods for constructing them are presented. It is shown that any configuration of an odd number of points on a circle is an equilibrium point for the Coulomb potential of nonzero point charges. The stability of the equilibrium configurations under consideration is discussed.  相似文献   

15.
We present an analytical treatment of the shape optimization problem that arises in the study of electron bubbles. The problem is to minimize a weighted sum of a Laplace eigenvalue, volume, and surface area with respect to the shape of the domain. The analysis employs the calculus of moving surfaces and yields surprising conclusions regarding the stability of equilibrium spherical configurations. Namely, all but the lowest eigenvalue result in unstable configurations and certain combinations of parameters, near-spherical equilibrium stable configurations exist. Two-dimensional and three-dimensional problems are considered and numerical results are presented for the two-dimensional case.  相似文献   

16.
Stationary equilibria of point vortices in the plane and on the cylinder in the presence of a background flow are studied. Vortex systems with an arbitrary choice of circulations are considered. Differential equations satisfied by generating polynomials of vortex configurations are derived. It is shown that these equations can be reduced to a single one. It is found that polynomials that are Wronskians of classical orthogonal polynomials solve the latter equation. As a consequence vortex equilibria at a certain choice of background flows can be described with the help of Wronskians of classical orthogonal polynomials.  相似文献   

17.
We consider the equations of motion of n vortices of equal circulation in the plane, in a disk and on a sphere. The vortices form a polygonal equilibrium in a rotating frame of reference. We use numerical continuation in a boundary value setting to determine the Lyapunov families of periodic orbits that arise from the polygonal relative equilibrium. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, the orbit is also periodic in the inertial frame. A dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, corresponds to choreographies of n vortices. We include numerical results for all cases, for various values of n, and we provide key details on the computational approach.  相似文献   

18.
This study summarizes the scaling behavior of single laminar submerged jets with circular and planar cross sections. Unified correlations for the stagnation zone heat transfer of both configurations, based on the dominant dimensionless numbers, are presented. In technical applications, impinging jets are often applied in jet array configurations. Compared to single jet impingement, jet-to-jet interaction can have a substantial influence on local heat transfer. A distinct pattern of the heat transfer coefficient was observed experimentally. Numerical simulations revealed two counter-rotating vortices in the interaction zone between two jets to be the causing mechanism of this pattern. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper we classify the free boundary associated to equilibrium configurations of compressible, self-gravitating fluid masses, rotating with constant angular velocity. The equilibrium configurations are all critical points of an associated functional and not necessarily minimizers. Our methods also apply to alternative models in the literature where the angular momentum per unit mass is prescribed. The typical physical model our results apply to is that of uniformly rotating white dwarf stars.  相似文献   

20.
A new class of bilinear relative equilibria of identical point vortices in which the vortices are constrained to be on two perpendicular lines, conveniently taken to be the x- and y-axes of a Cartesian coordinate system, is introduced and studied. In the general problem we have m vortices on the y-axis and n on the x-axis. We define generating polynomials q(z) and p(z), respectively, for each set of vortices. A second-order, linear ODE for p(z) given q(z) is derived. Several results relating the general solution of the ODE to relative equilibrium configurations are established. Our strongest result, obtained using Sturm’s comparison theorem, is that if p(z) satisfies the ODE for a given q(z) with its imaginary zeros symmetric relative to the x-axis, then it must have at least n?m+2 simple, real zeros. For m=2 this provides a complete characterization of all zeros, and we study this case in some detail. In particular, we show that, given q(z)=z 2+η 2, where η is real, there is a unique p(z) of degree n, and a unique value of η 2=A n , such that the zeros of q(z) and p(z) form a relative equilibrium of n+2 point vortices. We show that $A_{n} \approx\frac{2}{3}n + \frac{1}{2}$ , as n→∞, where the coefficient of n is determined analytically, the next-order term numerically. The paper includes extensive numerical documentation on this family of relative equilibria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号