首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fe-doped SrBi2Nb2O9 precursor solution was synthesized using bismuth nitrate Bi(NO3)3·5H2O, strontium nitrate Sr(NO3)2, iron nitrate Fe(NO3)3·9H2O, and niobium ethoxide Nb(OC2H5)5 as starting materials, ethylene glycol monomethyl ether (C3H8O2) as the solvent. 0.1BiFeO3-0.9SrBi2Nb2O9 thin films were prepared on fused quartz substrates using sol-gel processing. The surface morphology and crystal structure and optical properties of the thin films were investigated. The thin film annealing at 400°C were found to be amorphous, and the thin films crystallize to a perovskite structure after a post-deposition annealing at 600°C for 1 h in air. The grain of thin film was evenly distributed. The thin films exhibit the designed optical transmission, while the optical transition is indirect in nature. Their optical band gap is about 2.5 eV.  相似文献   

2.
Bi-layered ferroelectric Bi3TiTaO9 (BTT) thin films with different thickness (ranging from 100 to 400 nm) were successfully fabricated on Pt(111)/TiO2/SiO2/(100)Si substrates using chemical solution deposition (CSD) technique at different annealing temperatures. The c-axis orientation of the films was affected by film thickness and process temperature. The thinner the film and the higher the process temperature, the higher the c-axis orientation. With the increase of film thickness, the stress decreased but the film roughness increased, which led to the decrease of c-axis orientation of films. BTT films annealed at 800°C were found to have much improved remament polarization (P r ) than that of films annealed at 650 and 750°C. The P r and coercive field (E c ) values were measured to be 2 μC/cm2 and 100 kV/cm, respectively. BTT films showed well-defined ferroelectric properties with grain size larger than 100 nm.  相似文献   

3.
To enhance film conformality together with electrical property suitable for dynamic random access memory (DRAM) capacitor dielectric, the effects of oxidant and post heat treatment were investigated on aluminum and titanium oxide (Al2O3–TiO2) bilayer (ATO) thin film formed by atomic layer deposition method. For the conformal deposition of Al2O3 thin film, the O3 oxidant required a higher deposition temperature, more than 450 °C, while H2O or combined oxygen sources (H2O+O3) needed a wide range of deposition temperatures ranging from 250 to 450 °C. Conformal deposition of the TiO2 thin film was achieved at around 325 °C regardless of the oxidants. The charge storage capacitance, measured from the ATO bilayer (4 nm Al2O3 and 2 nm TiO2) deposited at 450 °C for Al2O3 and 325 °C for TiO2 with O3 oxidant on the phosphine-doped poly silicon trench, showed about 15% higher value than that of 5 nm Al2O3 single layer thin film without any increase of leakage current. To maintain the improved electrical property of the ATO bilayer for DRAM application, such as enhanced charge capacitance without increase of leakage current, upper electrode materials and post heat treatments after electrode formation must be selected carefully. Dedicated to Professor Su-Il Pyun on the occasion of his 65th birthday.  相似文献   

4.
Fabrication of ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thick films on a Pt/Ti/SiO2/Si substrate using powder-mixing sol-gel spin coating and continuous wave CO2 laser annealing technique to treat the specimens with at a relatively low temperature was investigated in the present work. PZT fine powders were prepared by drying and pyrolysis of sol-gel solutions and calcined at temperatures from 400 to 750°C. After fine powder-containing sol-gel solutions were spin-coated on a substrate and pyrolyzed, CO2 laser annealing was carried out to heat treat the specimens. The results show that laser annealing provides an extremely efficient way to crystallize the materials, but an amorphous phase may also form in the case of overheating. Thicker films absorb laser energy more effectively and therefore melt at shorter periods, implying a significant volume effect. A film with thickness of 1 μm shows cracks and rough surface morphology and it was difficult to obtain acceptable electrical properties, indicating importance of controlling interfacial stress and choosing appropriate size of the mixing powders. On the other hand, a thick film of 5 μm annealed at 100 W/cm2 for 15 s exhibits excellent properties (P r = 36.1 μC/cm2, E c = 19.66 kV/cm). Films of 10 μm form a melting zone at the surface and a non-crystallized bottom layer easily at an energy density of 100 W/cm2, showing poor electrical properties. Besides, porosity and electrical properties of thick films can be controlled using appropriate processing parameters, suggesting that CO2 laser annealing of modified sol-gel films is suitable for fabricating films of low dielectric constants and high crystallinity.  相似文献   

5.
Highly (111) oriented, phase-pure perovskite Pb(Zr0.3Ti0.7)O3 (or PZT 30/70) thin films were deposited on single-crystal, (0001) wurtzite GaN/sapphire substrates using the sol-gel process and rapid thermal annealing. The phase, crystallinity, and stoichiometry of annealed PZT films were evaluated by X-ray diffraction and Rutherford backscattering spectroscopy. The atomic force microscopy revealed a smooth PZT surface (rms roughness ∼1.5 nm) with striations and undulations possibly influenced by the nature of the underlying GaN surface. The cross-sectional field-emission scanning electron microscopic images indicated a sharper PZT/GaN interface compared to that of sol-gel derived PZT on (111) Pt/TiO2/SiO2/(100) Si substrates. The capacitance-voltage (C-V) characteristics for PZT in the Pt/PZT/GaN (metal-ferroelectric-semiconductor or MFS) configuration were evaluated as a function of annealing temperature and applied voltage. The observed C-V hysteresis stemmed from trapped charge at defect sites within PZT. Also, the lower capacitance density (C/A = 0.35 μF/cm2, where A is the area of an electrode) and remnant polarization (P r ∼ 4 μC/cm2) for PZT in the MFS configuration, compared to the values for PZT in the MFM configuration (Pt/PZT/Pt), were attributed to the high depolarization field within PZT.  相似文献   

6.
Ba(Zr,Ti)O3/LaNiO3 layered thin films have been synthesized by chemical solution deposition (CSD) using metal-organic precursor solutions. Ba(Zr,Ti)O3 thin films with smooth surface morphology and excellent dielectric properties were prepared on Pt/TiO x /SiO2/Si substrates by controlling the Zr/Ti ratios in Ba(Zr,Ti)O3. Chemically derived LaNiO3 thin films crystallized into the perovskite single phase and their conductivity was sufficiently high as a thin-film electrode. Ba(Zr,Ti)O3/LaNiO3 layered thin films of single phase perovskite were fabricated on SiO2/Si and fused silica substrates. The dielectric constant of a Ba(Zr0.2Ti0.8)O3 thin film prepared at 700°C on a LaNiO3/fused silica substrate was found to be approximately 830 with a dielectric loss of 5% at 1 kHz and room temperature. Although the Ba(Zr0.2Ti0.8)O3 thin film on the LaNiO3/fused silica substrate showed a smaller dielectric constant than the Ba(Zr0.2Ti0.8)O3 thin film on Pt/TiO x /SiO2/Si, small temperature dependence of dielectric constant was achieved over a wide temperature range. Furthermore, the fabrication of the Ba(Zr,Ti)O3/LaNiO3 films in alternate thin layers similar to a multilayer capacitor structure was performed by the same solution deposition process.  相似文献   

7.
Dry potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as activated carbon (AC), TiO2, Al2O3, MgO, CaO, SiO2 and various zeolites. The CO2 capture capacity and regeneration property of various sorbents were measured in the presence of H2O in a fixed bed reactor, during multiple cycles at various temperature conditions (CO2 absorption at 50–100 °C and regeneration at 130–400 °C). The KAlI30, KCaI30, and KMgI30 sorbents formed new structures such as KAl(CO3)2(OH)2, K2Ca(CO3)2, K2Mg(CO3)2, and K2Mg(CO3)2·4(H2O), which did not completely convert to the original K2CO3 phase at temperatures below 200 °C, during the CO2 absorption process in the presence of 9 vol.% H2O. In the case of KACI30, KTiI30, and KZrI30, only a KHCO3 crystal structure was formed during CO2 absorption. The formation of active species, K2CO3·1.5H2O, by the pretreatment with water vapor and the formation of the KHCO3 crystal structure after CO2 absorption are important factors for absorption and regeneration, respectively, even at low temperatures (130–150 °C). In particular, the KTiI30 sorbent showed excellent characteristics with respect to CO2 absorption and regeneration in that it satisfies the requirements of a large amount of CO2 absorption (87 mg CO2/g sorbent) without the pretreatment with water vapor, unlike KACI30, and a fast and complete regeneration at a low temperature condition (1 atm, 150 °C). In addition, the higher total CO2 capture capacity of KMgI30 (178.6 mg CO2/g sorbent) than that of the theoretical value (95 mg CO2/g sorbent) was explained through the contribution of the absorption ability of MgO support. In this review, we introduce the CO2 capture capacities and regeneration properties of several potassium-based sorbents, the changes in the physical properties of the sorbents before/after CO2 absorption, and the role of water vapor and its effects on CO2 absorption.  相似文献   

8.
The efflorescence and deliquescence processes of Mg(NO3)2 aerosol particles deposited on ZnSe substrate have been investigated through in situ Fourier transform infrared-attenuated total reflection (FTIR-ATR) technique at the molecular level. At relative humidity (RH) of ∼3%, Mg(NO3)2 particles existed as amorphous states. The amorphous Mg(NO3)2 particles were transformed into crystalline Mg(NO3)2 · nH2O (n ≤ 5) with slight increasing of RH. Thermodynamically stable Mg(NO3)2·6H2O crystals were gradually formed on the particle surface and started to be dissolved at the saturation point (∼53% RH). At the same time, a continuous phase transition from Mg(NO3)2 · nH2O (n≤5) to Mg(NO3)2·6H2O occurred on the particle surface. This led the solid particles to completely deliquesce at 76% RH, which was much higher than the saturation point of 53% RH. In the efflorescence process, Mg(NO3)2 droplets entered into the supersaturated region due to the gradual evaporation of water. Finally, amorphous particles were formed when RH decreased below 5%. In the FTIR-ATR spectra of the supersaturated Mg(NO3)2 droplets, the absorbance of the symmetric stretching vibration of NO 3 (v 1- NO 3 ) clearly became stronger. It resulted from the continuous formation of solvent share ion pairs (SIPs), and even the contact ion pairs (CIPs) between Mg2+ and NO 3 . Supported by the Trans-Century Program Foundation for the Talents by the Ministry of Education of China, the National Natural Science Foundation of China (Grant Nos. 20073004, 20473012, and 20673010), the 111 Project (B07012), and the State Key Laboratory of Physical Chemistry for Solid Surface of Xiamen University  相似文献   

9.
Ba(Ti1−x Sn x )O3 (x = 0.10 or 0.15) thin films were deposited on Si(100) and Pt(111)/TiO x /SiO2/Si(100) substrates via sol–gel spin-coating. Crack-free thin films could be obtained by single-step deposition, where the thickness was about 0.46 and 0.29 μm at 1000 and 2000 rpm, respectively. Circular delaminated parts 100 μm in diameter, however, tended to appear in thicker films deposited at 1000 rpm. On both kinds of substrates, the films were crystallized between 500 and 600 °C, where the perovskite phase emerged as the primary phase, and the formation of single-phase perovskite was basically achieved between 700–800 °C. The films deposited on Pt(111)/TiO x /SiO2/Si(100) substrates, however, tended to have small SnO2 and BaCO3 diffraction peaks, which decreased with increasing spinning rate. The dielectric properties were evaluated on the films deposited on Pt(111)/TiO x /SiO2/Si(100) substrates at 2000 rpm. The films prepared by single-step depositions had dielectric constants of 350 and 230, and dielectric loss of 0.30 and 0.10 at x = 0.1 and 0.15, respectively. The films prepared by two time deposition had dielectric constants of 450 and 250, and dielectric loss of 0.21 and 0.19 at x = 0.10 and 0.15, respectively.  相似文献   

10.
(La0.7Sr0.3)MnO3 thin films were deposited on SiO2/Si substrates by a metal-organic decomposition (MOD) method, and then Pb(Zr0.52Ti0.48)O3 (PZT) thin films were grown on (La0.7Sr0.3)MnO3-coated SiO2/Si substrates by a sol-gel method. The effects of annealing temperature on the crystalline phases, microstructures and electrical properties of the PZT films were investigated. X-ray diffraction analysis results indicated that the PZT films with a perovskite single phase could be obtained by annealing at 650°C. The dielectric constant and the remnant polarization of the PZT films increased with increasing annealing temperature. The remnant polarization and the coercive field of the films annealed at 650°C were 18.3 μC/cm2 and 35.5 kV/cm, respectively, whereas the dielectric constant and loss value measured at 1 kHz were approximately 1100 and 0.81, respectively.  相似文献   

11.
Nickel zinc ferrite (Ni0.4Zn0.6Fe2O4) films on Si (100) substrate were synthesized using a spin-coating method. The crystallinity of the Ni0.4Zn0.6Fe2O4 films with the thickness of about 386 nm became better as the annealing temperature increased. The films have smooth surface, relatively good packing density and uniform thickness. The volatilization of Zn is serious at 900 °C. With the increase of annealing temperature, the saturation magnetization M s increases in the temperature ranging from 400 to 700 °C, however, decreases above 700 °C, and the coercivity H c increases in the temperature range 400–800 °C, decreases above 800 °C. After annealed at 700 °C for 2 h in air with the heating rate 2 °C/min, the film shows a maximum saturation magnetization M s of 349 emu/cc and low coercivity H c of 66 Oe. The M s is higher than others which prepared by this method, however, the H c is lower. The M s of Ni0.4Zn0.6Fe2O4 films annealed at 700 °C increases with increasing annealing time and the H c changes slightly.  相似文献   

12.
ZrWMoO8 powders with different morphologies were obtained using ammonium tungstate, molybdate tungstate and zirconium tungstate as the starting materials by dehydrating the precursor ZrWMoO7(OH)2(H2O)2. The precursor was studied by thermo-gravimetric and differential scanning calorimetry (TG-DSC). The influence of the gelling agents (HCl, HClO4, HNO3, H2SO4 and H3PO4) on the crystallization process and crystal morphology of the products prepared was investigated by X-ray powder diffraction (XRD), scanning electron micrograph (SEM) and X-ray fluorescence spectrometer (XRF). Results showed that the morphology of the ZrWMoO8 particles can be simply adjusted by changing the gelling agents, and the thermal expansion coefficients of cubic ZrWMoO8 prepared in HCl solution are −3.84 × 10−6 K−1 from 100°C to 700°C. __________ Translated from Chemical Journal of Chinese University, 2007, 28(3): 397–401 [译自: 高等学校化学学报]  相似文献   

13.
The metal-ferroelectric-semiconductor (MFS) heterostructure has been fabricated using Bi3.25La0.75Ti3O12 (BLT) as a ferroelectric layer by sol-gel processing. The effect of annealing temperature on phase formation and electrical characteristics of Ag/BLT/p-Si heterostructure were investigated. The BLT thin films annealed at from 500°C to 650°C are polycrystalline, with no pyrochlore or other second phases. The C-V curves of Ag/BLT/p-Si heterostructure annealed at 600°C show a clockwise C-V ferroelectric hysteresis loops and obtain good electrical properties with low current density of below 2×10−8 A/cm2 within ±4 V, a memory window of over 0.7 V for a thickness of 400 nm BLT films. The memory window enlarges and the current density reduces with the increase of annealing temperature, but a annealing temperature over 600°C is disadvantageous for good electrical properties.  相似文献   

14.
Sol–gel processing of Cu-particle-dispersed (K0.5Na0.5)NbO3 (Cu/KNN) thin films was studied in an attempt to develop a method producing piezoelectric composite films with good mechanical performance. The Cu/KNN films were prepared via crystallization annealing at 650–750 °C for 1 min in air, followed by reduction annealing at 400–500 °C for 1–2 h in a 5% H2 and 95% Ar gas mixture. The resultant composite films consisted of perovskite KNN, metallic Cu, and Cu4O3. This suggests that the decomposition of Cu sources takes two different ways in this study. The Cu/KNN composite films containing Cu4O3 phases were produced by the crystallization annealing at 700 °C for 1 min followed by the reduction annealing at 500 °C for 1 h. Surface morphology observations reveal that these films have dense KNN matrix with a grain size of ~200 nm and uniformly dispersed Cu or Cu4O3 particles with a size of <500 nm.  相似文献   

15.
In the catalytic reduction atmosphere of H2+CH4+C4H4S, the ball-milled precursor (NH4)2MoS4 is heated to 300°C for decomposition. The as-synthesized product is characterized by XRD, SEM, HRTEM, EDX, and BET. The results show that multi-wall MoS2 nanotubes are obtained. The length of the nanotubes is around 3–5 μm. The diameters of the nanotubes are homogeneous, with an inner diameter of ∼15 nm, an outer diameter of ∼30 nm, and an interlayer (002) d-spacing of 0.63 nm. This catalytic thermal reaction occurring at low temperatures is important for the large-scale preparation of similar transition-metal disulfide nanotubes.  相似文献   

16.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

17.
Perovskite-type Ag(Nb0.6Ta0.4)O3 nanopowder was prepared by the sol–gel process from the AgNO3, Ta2O5 and Nb2O5, with help of K2CO3, avoiding use of strong corrosive acid or expensive niobium ethoxide and tantalum ethoxide. The results suggested that thermal decomposition of the xerogel took place when the xerogel was heated at 450 °C. Well-crystallized single-phased powder was obtained at low temperature about 680 °C. With the heat-treatment temperature increasing (680–1,100 °C), the intensity of the diffraction peaks increased. The crystallite size determined by Scherer formula and the result suggested that higher temperature lead to larger crystallite size. Moreover, the average grain size 30–50 nm was estimated by a field emission scanning electron microscope. The influence of holding time on microstructures indicated that the homogeneous and small grains were obtained at 800 °C for 2–4 h while larger ones for 8–16 h.  相似文献   

18.
2CaO·3B2O3·H2O which has non-linear optical (NLO) property was synthesized under hydrothermal condition and identified by XRD, FTIR and TG as well as by chemical analysis. The molar enthalpy of solution of 2CaO·3B2O3·H2O in HCl·54.572H2O was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in HCl·54.501H2O and of CaO in (HCl+H3BO3) solution, together with the standard molar enthalpies of formation of CaO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(5733.7±5.2) kJ mol−1 of 2CaO·3B2O3·H2O was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

19.
Lanthanum chromite LaCrO3, an important catalyst and interconnect material used in solid oxide fuel cell was prepared from lanthanumtrisoxalatochromate(III) hydrate [LaCr(C2O4)3]·9H2O (LTCR) employing microwave heating technique. The compound LTCR heated in microwave heating system gave pure LaCrO3 at 500°C within one hour. However LTCR heated in silicon carbide furnace yielded LaCrO3 at 900°C. BET surface area of LaCrO3 prepared by microwave and conventional heating techniques were found to be 2.8 and 1.2 m2 g−1, respectively. Thermogravimetry, differential thermal analysis and X-ray diffraction techniques were used to optimize the conditions for the microwave processing of the precursor.  相似文献   

20.
Al2O3/ZrO2 duplex films were deposited on a γ-TiAl based alloy by sol–gel processing starting from aluminum isopropoxide (Al(OC3H7)3) and zirconium (IV) oxychloride octahydrate (ZrOCl2 · 8H2O) as raw materials. Isothermal oxidation at 900 and 1,000 °C in 0.1 MPa O2 and cyclic oxidation at 1,000 °C in air of the coated and uncoated specimens were performed to investigate the effect of the duplex films on the oxidation behavior of the γ-TiAl alloy. The results of the isothermal oxidation tests indicated that the parabolic rate constants of the alloy were decreased due to the applied thin film. Additionally, the present film exhibited a beneficial effect on the cyclic oxidation resistance of the alloy in air. The duplex film could restrain the growth of TiO2, causing an increase of the Al2O3 content in the oxide mixture and thus decreased the oxidation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号