首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specimen quality is vital to (scanning) transmission electron microscopy (TEM) investigations. In particular, thin specimens are required to obtain excellent high-resolution TEM images. Conventional focused ion beam (FIB) preparation methods cannot be employed to reliably create high quality specimens much thinner than 20 nm. We have developed a method for in situ target preparation of ultrathin TEM lamellae by FIB milling. With this method we are able to routinely obtain large area lamellae with coplanar faces, thinner than 10 nm. The resulting specimens are suitable for low kV TEM as well as scanning TEM. We have demonstrated atomic resolution by Cs-corrected high-resolution TEM at 20 kV on a FIB milled Si specimen only 4 nm thick; its amorphous layer measuring less than 1 nm in total.  相似文献   

2.
Single crystalline Sn doped In(2)O(3) (ITO) NWs (nanowires) were synthesized via an Au-catalyzed VLS (vapor-liquid-solid) method at 600 °C. The different sizes (~20, ~40, ~80 nm) of the Au NPs (nanoparticles) provided the controllable diameters for ITO NWs during growth. Phase and microstructures confirmed by high-resolution transmission electron microscope images (HRTEM) and X-ray diffraction (XRD) spectra indicated that the phase of In(2)O(3) NWs had a growth direction of [100]. X-ray photoelectron spectroscopy (XPS) was employed to obtain the chemical compositions of the ITO NWs as well as the ratio of Sn/In and oxygen concentrations. The findings indicated that low resistivity was found for ITO NWs with smaller diameters due to higher concentrations of oxygen vacancies and less incorporation of Sn atoms inside the NWs. The resistivity of NWs increases with increasing diameter due to more Sn atoms being incorporated into the NW and their reduction of the amount of oxygen vacancies. Low resistivity NWs could be achieved again due to excess Sn atoms doped into the large diameter NWs. Therefore, by optimizing the well-controlled growth of the NW diameter and interface states, we are able to tune the electrical properties of Sn-doped ITO NWs.  相似文献   

3.
Large-scale high quality CdS nanowires with uniform diameter were synthesized by using a rapid and simple solvothermal route. Field emission scan electron microscopy (FESEM) and transmission electron microscopy (TEM) images show that the CdS nanowires have diameter of about 26 nm and length up to several micrometres. High resolution TEM (HRTEM) study indicates the single-crystalline nature of CdS nanowires with an oriented growth along the c-axis direction. The optical properties of the products were characterized by UV-vis absorption spectra, photoluminescence spectra and Raman spectra. The resistivity, electron concentration and electron mobility of single NW are calculated by fitting the symmetric I-V curves measured on single NW by the metal-semiconductor-metal model based on thermionic field emission theory.  相似文献   

4.
The low-energy ion-bombardment induced surface nanotopography and the nanopatterning of Si has been simulated by atomistic simulations using an approach based on molecular dynamics (MD). In order to speed up simulations a reasonable cutoff in simulation time and increased cooling rates for keeping in hand the system temperature have been used. We get an unexpectedly rich variety of disordered nanopatterns formed by the self-organization of the crater rims and adatoms islands generated by the individual ion impacts. Our results reveal that the low-energy (0.5 keV impact energy) ion-sputtered Si surface is not smooth at the sub-20 nm length scale and deep nanoholes rule the landscape. Moreover substantial nanoporosity is found beneath the surface with the size range of a few nanometer. Scanning tunneling microscopy (STM) images are also shown obtained for low-fluence ion-sputtering of Si at 2 keV impact energy at 30° angle of incidence. STM images reveal similar features obtained by computer simulations: nanoholes can be seen with a few nanometer diameter. The overall topography landscape as well as the rms surface roughness also show similar features for the images obtained by STM or MD at 2 keV impact energy. The applied approach could make it possible the simulation of nanotopographic images at the molecular dynamics level of theory and could help resolve scanning probe microscopy images in the sub-20 nm length scale regime.  相似文献   

5.
Nitrogen-modified cobalt-doped TiO2 materials were successfully prepared via a modified sol–gel method. The structure and properties of the catalysts were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, ultraviolet–visible light diffuse reflectance spectra (UV–Vis DRS), N2 adsorption–desorption isotherms, and energy-dispersive X-ray spectroscopy. The XRD patterns of the pure and co-doped TiO2 samples indicate that the predominant phase was anatase. The average grain size obtained from TEM was approximately 10 nm. The Brunauer–Emmett–Teller analysis results indicate that the specific surface area was 77.7 m2 g?1. The UV–Vis DRS results for the co-doped sample reveal an absorption edge that had been red-shifted to 500 nm. The photocatalytic activities of the samples were evaluated through photodegradation of papermaking wastewater under UV and visible light irradiation. Compared with the cobalt-doped TiO2 sample and Degussa P25, the 3 mol% N-doped mesoporous N/Co-TiO2 photocatalyst exhibited the highest photocatalytic activity, which can be ascribed to the synergistic effect of the N and Co co-doping.  相似文献   

6.
Colloidal gold has been coupled to a mutant cowpea mosaic virus (CPMV), which contains 60 cysteine residues on the surface. A purification process was developed to separate the gold-containing viral nanoblocks (VNBs) from the free gold. Agarose electrophoresis was utilized to separate the mixture followed by electroelution of the desired sample to recover the intact virus. Mobility of Au-VNB and free colloidal gold was facilitated by the addition of thioctic acid (TA). 30% of the gold-containing virus was recovered after electroelution as determined by absorbance measurements. Histogram analysis of transmission electron microscopy (TEM) images demonstrated the efficient separation of gold-containing virus from free gold. TEM and scanning electron microscopy (SEM) images indicated that the virus was recovered intact. Monodisperse spherical particles of nominal size of 45 nm were observed under SEM.  相似文献   

7.
Crystalline nanosized particles of clathrate-II phases K(x)Ge(136) and Na(x)Si(136) were obtained from a dispersion of alkali metal tetrelides in ionic liquids based on DTAC/AlCl(3), which were slowly heated to 120-180 °C. The nanoparticles are bullet-shaped with typical dimensions of about 40 nm in width and 140-200 nm in length. Detailed structure investigations using high-resolution transmission electron microscopy (HRTEM) and electron holography reveal the crystallinity and dense morphology of the clathrate nanorods.  相似文献   

8.
利用Pd催化合成单晶GaN纳米线的光学特性(英文)   总被引:1,自引:0,他引:1  
基于金属元素钯具有的催化特性,采用射频磁控溅射方法,在Si(111)衬底上沉积Pd:Ga2O3薄膜,然后在950℃下对薄膜进行氨化,制备出大量GaN纳米线.采用扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等技术手段对样品的结构、形貌和成分进行分析.结果表明,制备的样品为具有六方纤锌矿结构的单晶GaN纳米线,直径在20-60nm范围内,长度为几十微米,表面光滑无杂质,结晶质量较高.用光致发光光谱对样品的发光特性进行测试,分别在361.1、388.6和426.3nm处出现三个发光峰,且与GaN体材料相比近带边紫外发光峰发生了较弱的蓝移.对GaN纳米线的生长机制也进行了简单的讨论.  相似文献   

9.
Silicon nanowires (Si NWs) terminated with hydrogen atoms exhibit higher activation energy under ambient conditions than equivalent planar Si(100). The kinetics of sub-oxide formation in hydrogen-terminated Si NWs derived from the complementary XPS surface analysis attribute this difference to the Si-Si backbond and Si-H bond propagation which controls the process at lower temperatures (T < 200 °C). At high temperatures (T≥ 200 °C), the activation energy was similar due to self-retarded oxidation. This finding offers the understanding of early-stage oxide growth that affects the conductance of the near-gap channels leading towards more efficient Si NW electronic devices.  相似文献   

10.
Practical analyses of the structures of ultrathin multilayers in tunneling magneto resistance (TMR) and Magnetic Random Access Memory (MRAM) devices have been a challenging task because layers are very thin, just 1-2 nm thick. Particularly, the thinness (approximately 1 nm) and chemical properties of the AlOx barrier layer are critical to its magnetic tunneling property. We focused on evaluating the current TEM analytical methods by measuring the thickness and composition of an AlOx layer using several TEM instruments, that is, a round robin test, and cross-checked the thickness results with an X-ray reflectometry (XRR) method. The thickness measured by using HRTEM, HAADF-STEM, and zero-loss images was 1.1 nm, which agreed with the results from the XRR method. On the other hand, TEM-EELS measurements showed 1.8 nm for an oxygen 2D-EELS image and 3.0 nm for an oxygen spatially resolved EELS image, whereas the STEM-EDS line profile showed 2.5 nm in thickness. However, after improving the TEM-EELS measurements by acquiring time-resolved images, the measured thickness of the AlOx layer was improved from 1.8 nm to 1.4 nm for the oxygen 2D-EELS image and from 3.0 nm to 2.0 nm for the spatially resolved EELS image, respectively. Also the observed thickness from the EDS line profile was improved to 1.4 nm after more careful optimization of the experimental parameters. We found that EELS and EDS of one-dimensional line scans or two-dimensional elemental mapping gave a larger AlOx thickness even though much care was taken. The reasons for larger measured values can be found from several factors such as sample drift, beam damage, probe size, beam delocalization, and multiple scattering for the EDS images, and chromatic aberration, diffraction limit due to the aperture, delocalization, alignment between layered direction in samples, and energy dispersion direction in the EELS instrument for EELS images. In the case of STEM-EDS mapping with focused nanoprobes, it is always necessary to reduce beam damage and sample drift while trying to maintain the signal-to-noise (S/N) ratio as high as possible. Also we confirmed that the time-resolved TEM-EELS acquisition technique improves S/N ratios of elemental maps without blurring the images.  相似文献   

11.
采用蒸发诱导自组装法制备了高度有序的TiO2介孔薄膜. 利用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段对其进行了表征. 结果表明, 所得样品的孔径约为5 nm, 孔道规则, 且骨架为纯锐钛矿结构. 紫外-可见光谱(UV-Vis)的表征结果表明, 制备的TiO2介孔薄膜对波长小于380 nm的紫外线有很强的吸收. 对TiO2介孔薄膜的I-V(电流-电压)特性进行了表征, 发现加光后其I-V曲线由暗态时的肖特基特性转变为欧姆特性, 表明TiO2介孔薄膜对紫外光有很敏感的光电响应.  相似文献   

12.
We devised a controlled hydrogen plasma reaction at 300 °C to etch graphene and graphene nanoribbons (GNRs) selectively at the edges over the basal plane. Atomic force microscope imaging showed that the etching rates for single-layer and few-layer (≥2 layers) graphene are 0.27 ± 0.05 nm/min and 0.10 ± 0.03 nm/min, respectively. Meanwhile, Raman spectroscopic mapping revealed no D band in the planes of single-layer or few-layer graphene after the plasma reaction, suggesting selective etching at the graphene edges without introducing defects in the basal plane. We found that hydrogen plasma at lower temperature (room temperature) or a higher temperature (500 °C) could hydrogenate the basal plane or introduce defects in the basal plane. Using the hydrogen plasma reaction at the intermediate temperature (300 °C), we obtained narrow, presumably hydrogen terminated GNRs (sub-5 nm) by etching of wide GNRs derived from unzipping of multiwalled carbon nanotubes. Such GNRs exhibited semiconducting characteristics with high on/off ratios (~1000) in GNR field effect transistor devices at room temperature.  相似文献   

13.
Gold nanocrystallites dispersed in an inhomogeneous gold matrix are detected by high-resolution scanning electron microscopy using a field emission source and backscattered electron detection in the composition mode, as well as by energy-filtered transmission electron microscopy in the plasmon energy region. The identity of the nanocrystalline domains was established by observing the same evaporated gold film samples but using bright-field, dark-field, electron diffractogram, and electron energy loss spectroscopy images in the transmission electron microscope. Comparison of these images shows that backscattered electron and plasmon energy detection can be used to identify crystalline domains in an otherwise chemically uniform sample. Copyright 2001 Academic Press.  相似文献   

14.
We have developed a Si/graphene oxide electrode synthesized via ultrasonication-stirring method under alkaline condition. Scanning electron microscopy(SEM), transmission electron microscope(TEM), EDS dot-mapping and high-resolution transmission electron microscopy(HRTEM) results show that Si particles are evenly dispersed on the graphene oxide sheets. The electrochemical performance was investigated by galvanostatic charge/discharge tests at room temperature. The results revealed that Si/graphene oxide electrode exhibited a high reversible capacity of 2825 mAh/g with a coulombic efficiency of 94.6%at 100 mA/g after 15 cycles and a capacity retention of 70.8% after 105 cycles at 4000 mA/g. These performance parameters show a great potential in the high-performance batteries application for portable electronics, electric vehicles and renewable energy storage.  相似文献   

15.
为克服现有的透射电镜试样双喷电解减薄仪的缺点,自制了双喷电解减薄装置。该系列装置完令透明,安装有放大镜,可以完全看清电解液的双喷状况,观察试样表面侵蚀减薄的全过程,随时洲整,从而得到大而多的薄区;双喷部件由玻璃制成,耐腐蚀性好;冰水混合物作冷却剂,准备方便而且长时川温度恒定对制得的多种材料的试样经过透射电镜实验,效果良好。  相似文献   

16.
在1000 ℃用活性炭把二氧化锡粉末还原成单质锡, 锡作为催化剂, 硅片作为硅源同时作为收集衬底, 在硅片上制备出了非晶SiO2纳米灯笼. 灯笼的一端连在硅片上, 另一端为一个锡球, 中间是一些圆弧状的SiO2纳米线把两端相连. 纳米灯笼具有良好的对称性. 利用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED) 和HRTEM自带的能谱分析仪(EDS)对样品的表面形貌、微观结构和成分进行了分析研究. 结果表明, 灯笼中SiO2纳米线为非晶态, 结点是晶态锡, 结点表面覆盖一层非晶态的硅的氧化物. 结合实验条件对纳米灯笼的生长机理进行了讨论, 提出了纳米灯笼生长的一个模型.  相似文献   

17.
Due to their excellent characteristics such as carrier transport ability, high electrical conductivity, and mobility, core/shell nanostructure photovoltaic devices have received a lot of interest. In this study, HgI2@CsI core/shell nanoparticles were synthesized by using two-step pulsed laser ablation in liquid (PLAL) at laser fluences of 12.7 and 33.1 J/cm2. The structural and optical properties of the samples were examined using X-ray diffraction (XRD), zeta potential (ZP), energy dispersive X-ray (EDX), transmission electron microscope (TEM), UV–Vis absorption, and photoluminescence spectra. The XRD data conforms to the formation of cubic CsI and tetrahedral and orthorhombic HgI2. The zeta potential results show that the sample prepared at 33.1 J/cm2 has the highest stability. TEM images show the formation of core-shell morphology and the thickness of the shell depends on the laser fluence. UV–Vis results show that the band gap of the core/shell was 3.22 and 3.23 eV for 12.7 and 33.1 J/cm2, respectively. The fluorescence spectra show two emission peaks for two laser fluences. The current-voltage characteristics of the HgI2@CsI/Si heterojunction were measured at dark and illumination, and the maximum On/Off ratio was about 167 for a photodetector prepared at 12.7 J/cm2. The figures of merit of the photodetectors, including responsivity, external quantum efficiency, and detectivity, are measured at room temperature. A responsivity as high as 0.7 W/A at 400 nm was obtained for a photodetector fabricated at 12.7 J/cm2.  相似文献   

18.
A novel method for studying unlabeled living mammalian cells based on their autofluorescence (AF) signal in a prototype microfluidic device is presented. When combined, cellular AF detection and microfluidic devices have the potential to facilitate high-throughput analysis of different cell populations. To demonstrate this, unlabeled cultured cells in microfluidic devices were excited with a 488 nm excitation light and the AF emission (> 505 nm) was detected using a confocal fluorescence microscope (CFM). For example, a simple microfluidic three-port glass microstructure was used together with conventional electroosmotic flow (EOF) to switch the direction of the fluid flow. As a means to test the potential of AF-based cell sorting in this microfluidic device, granulocytes were successfully differentiated from human red blood cells (RBCs) based on differences in AF. This study demonstrated the use of a simple microfabricated device to perform high-throughput live cell detection and differentiation without the need for cell-specific fluorescent labeling dyes and thereby reducing the sample preparation time. Hence, the combined use of microfluidic devices and cell AF may have many applications in single-cell analysis.  相似文献   

19.
Bamboo-like multiwall boron nitride (BN) nanotubes were synthesized via annealing porous precursor prepared by self-propagation high temperature synthesis (SHS) method. The as-synthesized BN nanotubes were characterized by the field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy. These nanotubes have uniform diameters of about 60 nm and an average length of about 10 μm. Four growth models, including tip, base, based tip and base-tip growth models, are proposed based on the catalytic vapor-liquid-solid (VLS) growth mechanism for explaining the formation of the as-synthesized bamboo-like BN nanotubes. Chemical reactions and annealing mechanism are also discussed.  相似文献   

20.
双模板法合成介孔/大孔二级孔道碳材料   总被引:1,自引:0,他引:1  
以酚醛树脂低聚物为前驱物, 利用双模板法制备了具有介孔/大孔双孔结构的碳材料. 其中以二氧化硅蛋白石为大孔模板, 以嵌段共聚物自组装结构为介孔模板. 对样品进行了扫描电子显微镜(SEM), 透射电子显微镜(TEM), X射线衍射(XRD)和氮气吸附-脱附实验表征. 结果表明所制备的双孔碳材料大孔直径约为230 nm, 介孔直径10 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号