共查询到20条相似文献,搜索用时 15 毫秒
1.
Presented are results of our ab initio study of the surface reconstruction and relaxation of (1 0 0) surfaces on diamond nanowires. We have used a density function theory within the generalized-gradient approximation using the Vienna ab initio simulation package, to consider dehydrogenated and hydrogenated surfaces. Edges of nanowires offer a new challenge in the determination of surface structure. We have applied the methodology for stepped diamond (1 0 0) surfaces to this problem, and consider it useful in describing diamond nanowire edges to first approximation. We have found that dimer lengths and atomic layer depths of the C(1 0 0)(2 × 1) and C(1 0 0)(2 × 1):H nanowire surfaces differ slightly from those of bulk diamond and nanodiamond surfaces. The aim of this study is provide a better understanding of the effects of nano-scale surfaces on the stability of diamond nanostructures. 相似文献
2.
The reverse current of lateral-type Schottky diodes fabricated on p-type homoepitaxial diamond was analyzed by changing the distance between Schottky and Ohmic electrodes and the metal materials in the Schottky electrodes. The maximum electric field at breakdown was 0.56 MV cm−1 for the Au Schottky contact and less than 0.26 MV cm−1 for the Al Schottky contact. The breakdown voltage depended on the electrode distance when the diamond surface was revealed in vacuum, whereas the Schottky diodes sustained the applied voltage of 500 V, corresponding to 0.69 MV cm−1, after covering of the diamond surface with an insulating liquid. Diamond surface protection is an indispensable technique for fabrication of high-voltage Schottky diodes based on diamond. 相似文献
3.
Plasma sputtering deposition of platinum catalysts in porous anodic aluminum oxide (AAO) templates is shown to generate an anomalous superdiffusion concentration profile. The growth of an overlayer between the hexagonal array of pores is shown to enhance the diffusion into the pores, leading to a diffusion coefficient having superlinear time dependence. The Pt clusters in the pores have a mean size of 10 nm and almost concentrate on the inner pore surface, and are present up to a depth of 6 μm. 相似文献
4.
Metastable-induced electron spectroscopy (MIES) together with ultraviolet photoemission spectroscopy (UPS) was applied to the analysis of the surface electronic structure of chemical-vapor-deposited diamond films. The films were grown in a microwave plasma, and their surfaces were terminated by hydrogen. The MIES spectrum measured at an as-deposited surface contains peaks due to adsorbates. When this surface was annealed at 400 °C, those peaks were depressed, and the spectrum showed a similar structure to that of UPS. Once the surface was re-hydrogenated, the MIES spectrum rose up at lower energies than the UPS spectrum did for surfaces annealed at lower temperatures. Finally after annealing at 1000 °C, the cutoff energies of MIES and UPS converged at nearly the same values. The result demonstrates that the MIES detects a surface potential which changes locally at the hydrogen-terminated surfaces. 相似文献
5.
Jürgen Ristein 《Surface science》2006,600(18):3677-3689
The crystal structure of diamond is identical with that of its more common semiconductor relatives silicon and germanium. Consequently, a number of surface properties in terms of reconstructions, surface states and surface band diagrams are similar as in the case of Si or Ge. But diamond also exhibits a number of unusual and potentially very useful surface properties. Particularly when the surface dangling bonds are saturated by monovalent hydrogen atoms (donor-like), surface states are removed from the gap, the electron affinity changes sign and becomes negative, and the material becomes susceptible to an unusual type of transfer doping where holes are injected by acceptors located at the surface instead of inside the host lattice. These surface acceptors can in the simplest case be adsorbed molecules conveniently chosen by their electron affinity, but they can also be solvated ions within atmospheric water layers or electrolytes in contact with the hydrogenated diamond surface. In this article the surface properties of diamond will be reviewed with special emphasis on this new kind of doping mechanism. 相似文献
6.
Diamond is well known as the hardest material in nature. It also has other unique bulk physical and mechanical properties, such as very high thermal conductivity and broad optical transparency, which enable a number of new applications now that large areas of diamond can be fabricated by the new diamond plasma chemical vapor deposition (CVD) technologies. However, some of the most interesting properties of diamond, including the ability to be grown over large areas by CVD processes, result not from its bulk properties but from its special and unique surface chemistry. The surface chemistry derived properties are as remarkable as the bulk properties, and in the end may enable the development of new applications, technologies, and industries which are at least as important as those based on the bulk properties. Some of these surface properties are extreme chemical inertness, low surface energy, low friction coefficients, negative electron affinity, biological inertness, and high over-voltage electrode behavior. The surface science and some of the interesting ongoing research in these areas are explored and illustrated, and unresolved questions are highlighted. 相似文献
7.
陈小雨 《原子与分子物理学报》2019,36(6)
采用基于密度泛函理论(DFT-D)体系下的第一性原理平面波超软赝势方法,研究了被不同非金属(B、C、N、F)掺杂的TiO2(101)表面吸附NH3的特性与作用机理。研究发现:被非金属掺杂后的表面对NH3的吸附效果要优于未掺杂表面。不同元素掺杂对比发现:C掺杂后的表面吸附能最大,稳定后吸附距离最小,为最稳定吸附结构。通过Mulliken电荷分布和分态密度的分析,得到了不同吸附条件下NH3在TiO2掺杂表面的催化氧化还原作用机理,并发现各模型吸附能的不同是由于掺杂(X)位原子与NH3分子的相互作用强弱不同所造成。掺杂原子在费米面附近的电子态密度贡献越强,掺杂原子与NH3分子电荷转移的净值越小,吸附距离越小,吸附能越大,吸附更稳定。 相似文献
8.
采用基于密度泛函理论(DFT-D)体系下的第一性原理平面波超软赝势方法,研究了被不同非金属(B、C、N、F)掺杂的TiO_2(101)表面吸附NH_3的特性与作用机理.研究发现:被非金属掺杂后的表面对NH_3的吸附效果要优于未掺杂表面.不同元素掺杂对比发现:C掺杂后的表面吸附能最大,稳定后吸附距离最小,为最稳定吸附结构.通过Mulliken电荷分布和分态密度的分析,得到了不同吸附条件下NH_3在TiO_2掺杂表面的催化氧化还原作用机理,并发现各模型吸附能的不同是由于掺杂(X)位原子与NH_3分子的相互作用强弱不同所造成.掺杂原子在费米面附近的电子态密度贡献越强,掺杂原子与NH_3分子电荷转移的净值越小,吸附距离越小,吸附能越大,吸附更稳定. 相似文献
9.
陈小雨 《原子与分子物理学报》2018,35(6)
采用基于密度泛函理论(DFT-D)体系下的第一性原理平面波超软赝势方法,研究了被不同非金属(B、C、N、F)掺杂的TiO2(101)表面吸附NH3的特性与作用机理。研究发现:被非金属掺杂后的表面对NH3的吸附效果要优于未掺杂表面。不同元素掺杂对比发现:C掺杂后的表面吸附能最大,稳定后吸附距离最小,为最稳定吸附结构。通过Mulliken电荷分布和分态密度的分析,得到了不同吸附条件下NH3在TiO2掺杂表面的催化氧化还原作用机理,并发现各模型吸附能的不同是由于掺杂(X)位原子与NH3分子的相互作用强弱不同所造成。掺杂原子在费米面附近的电子态密度贡献越强,掺杂原子与NH3分子电荷转移的净值越小,吸附距离越小,吸附能越大,吸附更稳定。 相似文献
10.
High-frequency surface acoustic wave (SAW) filters using undoped and V-doped ZnO films were fabricated on diamond. Compared with their counterparts, the SAW filters using V-doped ZnO films have higher electromechanical coupling coefficient of ∼2.9% and lower insertion loss. The filtering performance improvement is considered to be due to the ferroelectricity in V-doped ZnO films and the resultant high piezoresponse (∼110 pm/V), which is one order of magnitude larger than that of undoped ZnO films. In addition, more perfect (0 0 2) preferred orientation, better uniform grains and smoother surface of V-doped ZnO films also contribute to the filtering performance improvement. 相似文献
11.
We study propagation of cold atoms along a curved atomic guide following an arbitrary trajectory in space. Transverse energy of the atomic beam increases as the beam propagates along the guide. Our model explains results of recent experiments on optical and magnetic guiding of cold atoms. 相似文献
12.
Takako Nakamura 《Applied Surface Science》2010,257(4):1368-1370
Diamond powder functionalized with optically active functional groups was fabricated by the photoreaction of H-terminated diamond powder and an alkene containing an optically active amide group and found to show a chiral recognition behavior for racemic compounds. 相似文献
13.
Yutaka Ohno Yuki Tokumoto Hiroto Taneichi Ichiro Yonenaga Kensuke Togase Sigeto R. Nishitani 《Physica B: Condensed Matter》2012,407(15):3006-3008
The width of a stacking fault ribbon bound by a pair of partial dislocations in silicon crystals was unchanged when boron and gallium atoms of p-type dopant were agglomerated nearby the ribbon by annealing, even though the width increased when n-type dopant atoms were agglomerated as previously reported [Y. Ohno, Y. Tokumoto, I. Yonenaga, Thin Solid Films, accepted for publication]. The origin of the width-increase in n-type crystals was proposed as the reduction of the stacking fault energy, from 58±5 down to 46±5 mJ/m2, due to an electronic interaction between the ribbon and the n-type dopant atoms, and the interaction energy was estimated to be 0.15±0.05 eV. On the other hand, the interaction of p-type dopant atoms with stacking faults was not detected. 相似文献
14.
Gabriela Ben-Melech Stan 《Molecular physics》2019,117(15-16):2058-2068
ABSTRACTMolybdenum disulfide (MoS2) is a common two-dimensional semiconductor that has been highly studied as an emerging material for catalysis and electronics. The most common material defects in MoS2 are sulfur vacancies. In order to reveal the nature of the trapped states induced by sulfur vacancies, we perform Density Functional Theory (DFT) combined with quantum dynamics calculations. According to our model, we find that the sulfur vacancies create trap states in the original band gap of monolayer MoS2 that disrupt charge transmission through the monolayer. In addition, we did not find any resonance states among the shallow states in the conduction band continuum. 相似文献
15.
Using first-principles calculations, we investigated the electronic and magnetic properties of Mn-doped, Fe-doped, and Co-doped diamond. It is found that the Mn-, Fe-, and Co-doped diamond are stabilized in ferromagnetic configurations. The origins of the magnetic ordering are explained successfully by the phenomenological band coupling model based on the p–d and d–d level repulsions between the dopant ions and host elements. According to Heisenberg model, high Curie temperature may be expected for Mn-, Fe-, and Co-doped diamond if there are no native defects or other impurities. 相似文献
16.
The adsorption of a monolayer of V on idealized Fe- and oxygen-terminated hematite (0 0 0 1) surfaces and subsequent oxidation under atomic O adsorption are studied by density functional theory. Theoretical results are compared with X-ray surface standing wave and X-ray photoelectron spectroscopic measurements, and interpreted in the light of data on sub-monolayer coverages. Near-surface Fe reduction under V adsorption and accompanying structural relaxation are examined. These effects and subsequent response to oxidation, are found to be highly site specific. A full monolayer of oxygen leads to a V5+ state and reoxidation of subsurface Fe to the trivalent state, seen in both theory and experiment. 相似文献
17.
J. Grucker J.-C. Karam F. Correia F. Perales G. Vassilev V. Bocvarski S. M. Chérif J. Baudon M. Ducloy 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2007,41(3):467-474
Diffraction of thermal velocity metastable atoms by non-magnetic and
magnetic reflection gratings of micrometric period has been observed. This
observation is made possible by the use of an ultra narrow beam generated by
metastability exchange. Grazing incidence angles are exploited to minimise
the quenching of metastable atoms on the grating surface. Potential
applications are beam splitting, atom holography and probing of micro-sized
solid surfaces. 相似文献
18.
Elastic Peak Electron Spectroscopy (EPES) is used to characterize the H termination of the (1 0 0) diamond surface. Two specific features of the technique make this possible, namely surface sensitivity and the ability to directly detect H. An approach to quantify the H content for the particular spatial distribution involved here is discussed and a measure of H surface coverage is given. 相似文献
19.
本研究采用密度泛函理论方法详细讨论了纯的石墨烯及Ti, Fe, Al, Ca原子掺杂石墨烯吸附草甘膦的机理.通过它们之间的吸附能,差分电荷密度,布居电荷,态密度分析发现草甘膦可以被纯的石墨烯及金属原子掺杂石墨烯不同程度地吸附.纯的石墨烯对草甘膦的吸附作用远不及掺杂石墨烯,其中,草甘膦在Ca掺杂石墨烯表面有最强相互作用.这是因为草甘膦与纯的石墨烯之间主要形成了-P=O…π,-COOH…π和-OH…π非共价的相互作用,而与掺杂石墨烯之间主要形成了Metal-O“单齿”和O-Metal-O“双齿”共价相互作用.本研究结果希冀为石墨烯在环境保护方面的应用提供有价值的理论指导. 相似文献
20.
Petr P. Sharin Sofia P. Yakovleva Susanna N. Makharova Maria I. Vasilieva Vasilii I. Popov 《Composite Interfaces》2019,26(1):53-65
The structural-phase state of the contact zone and the factors that influence on the strength of diamond retention in the diamond carbide composites were determined. Composites were obtained by the new hybrid technology that eliminates the reheating of the metalized coating. The elaborated technology combines the thermal diffusion metallization of a diamond and the sintering by the scheme of self-dosed impregnation in a one-stage technological cycle. By the methods of electron microscopy, X-ray diffraction analysis, and Raman spectroscopy the structural and phase characteristics of the interphase boundary were investigated. The improvement of chemical and mechanical adhesion between the diamond and carbide matrix was obtained. It was shown that the specific productivity of the samples with a metalized diamond component is 39% higher than those without metallization. 相似文献