首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This paper presents the results of conduction band discontinuities calculation for strained/relaxed Si1?x Ge x /Si1?y Ge y heterointerfaces in Γ 15C , Γ 2′C and L upper bands minima, as well as the room-temperature strained (vs. relaxed) band gaps deduced from the classical model-solid theory. Based upon the obtained data, we propose a type-I W-like Si1?y Ge y /Si1?x Ge x /Ge/Si1?x Ge x /Si1?y Ge y quantum wells heterostructure optimized in terms of compositions and thicknesses. Electronic states and wave functions are found by solving Schrödinger equation without and under applied bias voltage. An accurate investigation of the optical properties of this heterostructure is done by calculating the energies of the interband transitions and their oscillator strengths. Moreover, a detailed computation of the bias-voltage evolution of the absorption spectra is presented. These calculations prove the existence of type-I band alignment at Γ 2′C point in compressively strained Ge quantum wells grown on relaxed Ge-rich Si1?y Ge y buffers. The strong absorption coefficient (> 8 × 103 cm-1) and the large Stark effect (0.1 eV @ 2 V) of the Γ 2′C transitions thresholds open up perspectives for application of these heterostructures for near-infrared optical modulators.  相似文献   

2.
Structural imperfections were studied in Si1?xGex (1–9 at. % Ge) solid-solution single crystals grown using the Czochralski method. The studies were performed using x-ray diffraction topography with laboratory and synchrotron radiation sources, x-ray diffractometry, and synchrotron radiation phase radiography. In all crystals studied, irrespective of the Ge concentration, impurity bands (growth bands) were observed. An increase in the Ge concentration in the range 7–9 at. % was shown to bring about the nucleation and motion of dislocations on a few slip systems and the formation of slip bands. Local block structures were observed in the places where slip bands intersected. The most likely reason for the formation of slip bands is the inhomogeneous distribution of Ge atoms over the ingot diameter and along the growth axis. Therefore, the structure of Si1?xGex solid-solution single crystals can be improved by making them more uniform in composition.  相似文献   

3.
The dynamic magnetic susceptibility (χac) of magnetically ordered Gd5Si2?xGe2?xSn2x compounds with the partial substitution for silicon and germanium atoms by isovalent tin atoms (2x = 0 ? 0.1) has been investigated experimentally. From the temperature dependence of χac the Curie temperatures of these alloys are determined. It is established that tin-doped alloys have higher Curie temperatures as compared to Gd5Si2Ge2T C ≈ 15 K).  相似文献   

4.
For a nonperiodic system, a bamboo Si1?x Ge x nanowire with axially degraded components, it is impossible to obtain its phonon dispersion relations through lattice dynamic or the first principle calculation. Therefore, we present a simple and available method to solve this problem. At first, the Si1?x Ge x nanowire with axially degraded component is divided into several sections according to its component distribution like bamboos’ sections formed in the growth process. For each section with a given x value, we constructed a pseudo-cell to calculate its phonon dispersion relations. Thermal conductances of junctions and of each section are then calculated by the phonon mismatch model and the phonon transmission probability with diffusive and ballistic portions. The dependences of thermal conductivity on the length of each section and the gradient of degraded component between sections are presented. We studied thermal conductivity dependence on temperature, length and diameter of the Si1?x Ge x nanowire with axially degraded component. And we found κ ~ l 0.8, in which the exponent 0.8 is ascribed to the competition between phonons ballistic and diffusive transport. Furthermore, thermal conductivities along axial (100), (110), and (111) directions are discussed in detail. The method provides a simple and available tool to study thermal conductivity of a non-period system, such as a quasiperiodic superlattice or a nanowire with axially degraded component.  相似文献   

5.
The composition and mechanical stresses in Si1?xGex nanoislands involved in multilayer and single-layer structures grown under the same conditions are determined using Raman spectroscopy. It is demonstrated that an increase in the content of silicon in the nanoislands contained in a multilayer structure does not enhance their relaxation (as compared to that in a single layer) due to the absence of a free surface. The experimental scattering spectrum of folded acoustic phonons contains bands with sufficiently small half-widths, which indicates high quality of the grown superlattices with nanoislands.  相似文献   

6.
Selective chemical etching and transmission electron microscopy are used to study the defect formation in Ge1?xSix/Ge(111) epitaxial heterostructures at 0.01<x<0.35. As the Si content in the solid solution (SS) increases, the dislocation densities in the epitaxial layer, at the interface, and in the near-interface region in the substrate are found to vary nonmonotonically. The difference in the depth distribution of dislocations observed in the heterostructures in three different SS composition ranges is caused by the effect of the SS composition on the kinetics of misfit-stress relaxation, in particular, on the intensity of misfit-dislocation generation and multiplication. It is found that, in the heterostructures grown by hydride epitaxy at 600°C, misfit-dislocation multiplication through a modified Frank-Read mechanism occurs only in the range 0.03<x<0.20. The results obtained are explained in the context of the effect of silicon-rich microprecipitates, which form during the spinodal decomposition of the SS, on dislocation generation and motion in the epitaxial layer. A mechanism is proposed for misfit-dislocation generation by heterogeneous sources in the epitaxial layer; the mechanism is based on the generation of interstitial dislocation loops near microprecipitates.  相似文献   

7.
We show by a combined magnetic force microscopy and synchrotron radiation spectroscopy study that stripe-like patterned magnetic domains are present in Fe1?x Ga x thin films. These stripes, whose origin is attributed to an out-of-plane magnetic component, can be rotated by an external magnetic field.  相似文献   

8.
The temperature dependences of the molar heat capacity at constant pressure, Cp, of Pb5(Ge1?xSix)3O11 crystals with x=0, 0.39, and 0.45 in the range 5–300 K, as well as of their permittivity, dielectric losses, and the pyroelectric effect, have been measured. Experimental data on the temperature behavior of the heat capacity are presented in the form of a sum of two Debye and one Einstein terms, Cp(T)=0.405CD1D1=160 K, T)+0.53CD2D2=750 K, T)+0.046CEE=47 K, T). Besides a peak in the region of the ferroelectric Curie point Tc=450 K for crystals with x=0, the temperature dependences of the heat capacity did not reveal any other pronounced anomalies.  相似文献   

9.
In this work, we show that compositionally controlled Cu2(Sn1–xGex)S3 nanocrystals can be successfully synthesized by the hot-injection method through careful tuning the Ge/(Sn+Ge) precursor ratio. The band gaps of the resultant nanocrystals are demonstrated to be linearly tuned from 1.45 to 2.33 eV by adjusting the composition parameter x of the Ge/(Sn+Ge) ratio from 0.0 to 1.0. The crystalline structures of the resultant NCs have been studied by the X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), select area electron diffraction (SAED), and Raman spectroscopy. A ligand exchange procedure is further performed to replace the native ligands on the surface of the NCs with sulfur ions. The photoresponsive behavior indicates the potential use of as-prepared Cu2(Sn1–xGex)S3 nanocrystals in solar energy conversion systems. The synthesis of compositionally controlled Cu2(Sn1–xGex)S3 nanocrystals reported herein provides a way for probing the effect of Ge inclusion in the Cu-Sn-S system thin films.  相似文献   

10.
Raman scattering is performed to access phase stability in the boron-implanted Hg0.7Cd0.3Te with fluences ranging from 1 × 1012 to 1 × 1015 cm?2. Threshold fluence for the formation of an amorphous phase is invoked here using Thomas–Fermi statistical model. Asymmetric broadening and red shift of the Raman active HgTe-like LO phonon mode are observed with varying fluencies. Electrical properties such as sheet carrier concentration and mobility are also changed with the fluence and reach their saturated values beyond threshold fluence of 5 × 1013 cm?2. Threshold fluence for the formation of amorphous phase is also validated by the Raman measurements and electrical transport properties in the implanted layers. The excess free energy of 6.8 kJ/mole is found corresponding to the threshold fluence for phase transition.  相似文献   

11.
The ternary compound EuPtP exhibits two valence transitions at T 1 = 235 K and T 2 = 190 K. In order to examine a field-induced valence transition of Eu, we synthesized EuPtP1−x As x compounds with 0.05 ≤ x ≤ 0.5 and studied the magnetic and valence behavior. The substitution of As for P increases the lattice volume linearly and decreases both valence transition temperatures, T 1 and T 2, in contrast to the behavior under external pressures. The magnetization process in a pulsed magnetic field revealed that EuPtP0.5As0.5 exhibits an onset of metamagnetic transition above 50 T with a large hysteresis, which evidences a first-order field-induced valence transition. The analysis of the magnetization curves of x = 0.5 at various temperatures has demonstrated that the field-induced transition is essentially the same as the transition induced by temperature at T 1.  相似文献   

12.
First-principles calculations based on the density functional theory are performed to study the structural properties, spin-polarized electronic band structures, density of states and magnetic properties of the zinc blende In1− x Mn x Sb (x = 0.125, 0.25, 0.50, 0.75, 1.0). The calculated lattice constants of In1− x Mn x Sb obey the Vegard’s law with a marginal upward bowing. With the increase of Mn concentration in In1− x Mn x Sb, a transition from the semi-metallic to the half-metallic behavior happens such that the majority-spin valence states crosses the Fermi level and the minority-spin states have a gap at the Fermi level. A large exchange splitting (∼ 4 eV) is observed between Mn 3d states of the majority-spins and the minority-spins. The total magnetic moment of In1− x Mn x Sb half-metallic ferromagnets per Mn atom basis is 4μ B. The total magnetic moment per Mn atom indicate that Mn atoms act as acceptors in InSb and contribute to holes in the lattice of InSb. Due to p-d hybridization, the free space charge of Mn reduces that results a loss in its magnetic moment. The loss in the magnetic moment of the Mn atoms is converted into a small local magnetic moments on the In and Sb sites.  相似文献   

13.
The special features of the dielectric properties and conduction of ferroelectric crystals of Pb5(Ge1?xSix)3O11 (0 ≤ x ≤ 0.67) solid solutions were studied. Permittivity anomalies close to the temperatures T1 ≈ 260 K and T2 ≈ 130 K, the appearance of relaxator behavior at x > 0.35, and critical behavior of the concentration dependences of dielectric and pyroelectric characteristics at x1 = 0.35 and x2 = 0.60 were observed and studied. These phenomena were found to be related to the dynamics of charge localization on defects with activation energies of Ua1 ≈ 0.6 eV and Ua2 ≈ 0.23 eV. Relaxator behavior appears when the Curie point lies in the temperature region of thermal charge localization. The concentration dependence features at x1 and x2 are explained by the coincidence of the Curie point and the centers of the temperature regions of charge localization on the Ua1 and Ua2 defect levels, respectively.  相似文献   

14.
We report the results of a study on ultrahigh-vacuum chemical vapor deposition of SixGe1-x layers on Si(111)(7×7) with GeH4 and Si2H6 mixtures. Using combined scanning tunneling microscopy and X-ray photoelectron spectroscopy, structural properties, the growth kinetics and the composition of the deposited alloys are analyzed as a function of the growth temperature for two different GeH4:Si2H6 mixture ratios. The mutual influence of the precursors is shown by comparing the structures formed during deposition and the sticking coefficients of Si2H6 and GeH4 with results obtained from exposure of Si(111) to the pure gases. Received: 28 July 2002 / Accepted: 2 October 2002 / Published online: 5 February 2003 RID="*" ID="*"Corresponding author. Fax: +49-731/502-5452, E-mail: hubert.rauscher@chemie.uni-ulm.de  相似文献   

15.
This work deals with the optoelectronic properties of heterostructures built on type II Si1-xGex/Si strained quantum wells grown on relaxed Si1-yGey/Si (001) pseudo-substrates. To limit the intrinsic problem due to the real-space indirect nature of the interface, we propose and model three heterostructures having three different potential profiles of the valence and conduction bands which consist in various arrangements of Si and Si1-xGex barriers of different Ge contents. The proposed stacks are designed in a pragmatic way for a pseudomorphic growth on relaxed Si1-yGey assuming individual layer thickness being smaller than the known critical thickness and an overall compensation of the strain. Variation of thickness and compositions (x>y) permits to optimize i) the quantum confinement of electrons and heavy-hole levels and ii) the wave function's overlap and the out-of-plane oscillator strength. The optimum parameters satisfy a fundamental emission at a key 1.55 μm wavelength below the absorption edge of each layer constitutive of the stacks. A comparison between the characteristics of the three heterostructures brings out the superior advantages of the W architecture.  相似文献   

16.
The recent demonstration of thermal conductivity of rough electrolessly etched Si nanowire (Hochbaum et al., Nature, 451:163, 2008) attracted a lot of interest, because it could not be explained by the existing theory; thermal conductivity of rough Si nanowires falls below the boundary scattering of the thermal conductivity. However, nanoscale pores presented in the nanowires (Hochbaum et al., Nano Letters, 9:3550–3554, 2009) hinder one to be fully convinced that the surface roughness solely made a contribution to the significant reduction in thermal conductivity. In this study, we synthesized vapor–liquid–solid (VLS) grown rough Si1−x Ge x nanowire and measured and theoretically simulated thermal conductivity of the nanowire. The thermal conductivity of rough Si0.96Ge0.04 nanowire is an order of magnitude lower than that of bulk Si0.96Ge0.04 and around a factor of four times lower than that of smooth Si0.96Ge0.04 nanowire. This significant reduction could be explained by the fact that the surface roughness scatters medium-wavelength phonons, whereas the long-wavelength phonons are scattered by phonon boundary scattering, and the short-wavelength phonons are scattered by alloy scattering.  相似文献   

17.
The results of the study of photoluminescence and its excitation spectra in Tl x Cu1−x GaSe2 single crystals are presented. The crystals under study are layered and characterized by anisotropic optical properties. In this respect, it is important to investigate optical properties of the crystals under study.  相似文献   

18.
Radiation-induced changes in the optical properties of chalcogenide glasses in the Ge-As-S system are investigated as a function of the concentration. Theoretical calculations are performed with due regard for possible constraints on the range of variation in the number of homobonds and heterobonds upon their switching in the structural network of chalcogenide glasses. The experimental data are obtained upon irradiation of GexAs40?xS60 thin films with fast electrons (6 MeV). The possible mechanism of structural transformations responsible for the specific features in the concentration dependence of the change in the band gap of chalcogenide glasses is discussed.  相似文献   

19.
Relaxed step-graded buffer layers of Si1?xGex/Si(001) heterostructures with a low density of threading dislocations are grown through chemical vapor deposition at atmospheric pressure. The surface of the Si1?xGex/Si(001) (x ~ 25%) buffer layers is subjected to chemical mechanical polishing. As a result, the surface roughness of the layers is decreased to values comparable to the surface roughness of the Si(001) initial substrates. It is demonstrated that Si1?xGex/Si(001) buffer layers with a low density of threading dislocations and a small surface roughness can be used as artificial substrates for growing SiGe/Si heterostructures of different types through molecular-beam epitaxy.  相似文献   

20.
The band structure, density of states of AlxGa1?xN and InyGa1?yN was performed by the first-principles method within the local density approximation. The calculated energy gaps of the AlN, Al0.5Ga0.5N, GaN, In0.5Ga0.5N and InN were 5.48, 4.23, 3.137, 1.274 and 0.504 eV, which were in agreement with the experimental result. The dielectric functions, absorption coefficient and loss function were calculated based on Kramers–Kronig relations. Further more, the relationships between electronic structure and optical properties were investigated theoretically. For AlxGa1?xN and InyGa1?yN materials, the micromechanism of the optical properties were explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号