首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hierarchical porous carbons are widely used as adsorbents, catalyst supports, electrode materials, and other applications because of their high specific surface area (SSA), varied pore structure, adjustable porosity, and excellent physicochemical stability. Introducing heteroatoms such as N, P, or S, with electronegativities different from that of carbon, into the carbon skeleton can change the chemical properties of the surface and the density of the electron cloud around the carbon matrix, thus altering interactions of CO2molecules with the surface and improving CO2adsorption capacity. Therefore, doping heteroatoms in carbon materials has attracted a great amount of attention. In this paper, the template method was used with F108 (polyethylene glycol–polypropylene glycolpolyethylene glycol) as the template, resorcinol and formaldehyde solutions as the carbon sources, phosphoric acid as the phosphorus source, and KOH as the activator to prepare phosphorus-doped hierarchical porous carbons. Through a series of characterization and CO2adsorption experiments, the influence of the amount of KOH and template agent on the pore structure of carbon materials was studied. We conclude that these phosphorus-doped hierarchical porous carbon materials are promising CO2adsorbents.  相似文献   

2.
N-Doped meso-macroporous carbon materials were synthesized using melamine-formaldehyde resin as carbon precursor and silica spheres as a removable template. The as-synthesized carbon materials with a bimodal pores structure (about 3.9 and ~50–200 nm) display a high surface nitrogen content of 30 wt %. The macropores of carbon materials can be modulated by changing the diameter of template. The SO2 adsorption experiments demonstrate a high adsorption capacity of 78.6 mg g?1 and a considerable stability even over 9 cycles for the carbon materials.  相似文献   

3.
The mix-based activated carbon derived from corn stalk and walnut shell was prepared by chemical activation method using phosphoric acid as the activator. The optimized conditions for preparation were obtained by the orthogonal experiment, the characterizations of the activated carbon were performed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy(FTIR), Boehm's titration method and nitrogen adsorption. For the prepared mix-based activated carbon, the highest iodine number, methylene blue number and BET surface area are 720.5 mg/g, 195.0 mg/g and 1187 m2/g, respectively, and the pores are mainly mesopores. The mix-based activated carbon shows the higher adsorption capacity for malachite green than the raw materials, the activated carbons prepared only from corn stalk or walnut shell and the commercial activated carbon. The kinetics and thermodynamics of the adsorption can be satisfactorily described by the pseudo-second-order kinetic model and the Langmuir isotherm model, separately.  相似文献   

4.
A study on the adsorption of sulfamethazine sodium (SMS) from aqueous solution onto the activated carbon (AC)-based Salix psammophila (SP) by phosphoric acid activation was conducted. The central composite design under response surface methodology was employed for the removal of SMS and the process parameters were optimized. Influence of adsorbent dose, initial concentration of SMS, contact time and solution pH on the adsorption capacity of AC was investigated. The optimum adsorption conditions were obtained using adsorbent dosage of 0.54?g/L, initial concentration of 322?mg/L, contact time of 8?hours, pH value of 4.04. Kinetic studies showed the adsorption followed a pseudo-second-order model and Elovich model. The experimental equilibrium data were fitted Koble-Corrigan model and Freundlich model well and the maximum monolayer adsorption capacity of AC calculated by Langmuir model was 338.58?mg/g at 25?°C. In addition, AC was characterized by the SEM–EDS, BET, FITR and point of zero charge (pHpzc). The mechanisms of SMS sorption onto AC were explored. Desorption and regeneration tests were carried out to evaluate the feasibility of reusing the AC. This study indicated the AC prepared from SP was an excellent adsorbent with the low cost and high performance.  相似文献   

5.
Activated carbon production from almond shells using phosphoric acid activation agent was achieved by applying both conventional heating and microwave heating in succession. The morphology and surface properties of activated carbon were studied using thermogravimetric and differential gravimetric analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller analysis. A surface area of 1128 m2/g was achieved by optimizing the microwave power (500?W), microwave application time (15?minutes), conventional heating time (45?minutes), conventional heating temperature (500?°C), and the phosphoric acid:sample ratio (0.7:1). An adsorption capacity of methylene blue of 148?mg/g and an iodine value of 791?mg/g was obtained for the prepared activated carbon.  相似文献   

6.
Olivine LiFePO4/C nanocomposite cathode materials with small-sized particles and a unique electrochemical performance were successfully prepared by a simple solid-state reaction using oxalic acid and citric acid as the chelating reagent and carbon source. The structure and electrochemical properties of the samples were investigated. The results show that LiFePO4/C nanocomposite with oxalic acid (oxalic acid: Fe2+= 0.75:1) and a small quantity of citric acid are single phase and deliver initial discharge capacity of 122.1 mAh/g at 1 C with little capacity loss up to 500 cycles at room temperature. The rate capability and cyclability are also outstanding at elevated temperature. When charged/discharged at 60 °C, this materials present excellent initial discharge capacity of 148.8 mAh/g at 1 C, 128.6 mAh/g at 5 C, and 115.0 mAh/g at 10 C, respectively. The extraordinarily high performance of LiFePO4/C cathode materials can be exploited suitably for practical lithium-ion batteries.  相似文献   

7.
以多壁碳纳米管表面接枝的L-苯丙氨酸为结合位点, 甲基丙烯酸为功能单体, 乙二醇二甲基丙烯酸酯为交联剂, 采用沉淀聚合技术, 在碳纳米管表面制备了对硝基苯酚印迹复合材料. 采用红外光谱和扫描电镜研究了该印迹复合材料的结构和形貌, 结果表明, 在碳纳米管表面接枝了一层稳定的印迹材料. 采用高效液相色谱研究了该印迹材料的等温吸附性能, 结果表明, 该印迹材料对模板分子具有较大的吸附容量(Qmax=80.5 μmol/g)和良好的选择吸附性能(选择因子达2.5). 以该印迹材料作为固相萃取吸附剂, 研究了它对对硝基苯酚和其它结构类似物混合溶液的动态吸附性能, 结果表明, 印迹复合材料对对硝基苯酚的吸附容量不受结构类似物浓度的影响, 能较好地应用于对硝基苯酚的分离富集检测.  相似文献   

8.
Silica-supported hierarchical graphitic carbon sheltering cobalt nanoparticles Co-HGC@SiO2 (1) were prepared by pyrolysis at 850 °C of [Co(phen)(H2O)4]SO4·2H2O complex with silica in the presence of pyrene as a carbon source under nitrogen atmosphere. Nanocomposites (2) and (3) were obtained by acid treatment of (1) with HCl and HF acid, respectively. The nanocomposites showed rough hierarchical carbon microstructures over silica support decorated with irregular cobalt nanospheres and nanorods 50 to 200 nm in diameter. The nanoparticles consist of graphitic shells and cobalt cores. SEM, EDAX and TEM elemental mapping indicate a noticeable loss of cobalt in the case of (2) and loss of cobalt and silica in the case of (3) with an increase in porosity. Nanocomposite (3) showed the highest BET surface area 217.5 m2g−1. Raman spectrum shows defect D-band and graphitic G-band as expected in carbon nanostructures. PXRD reveals the presence of cobalt(0) nanoparticles. XPS indicates the presence of Co(II) oxides and the successful doping of nitrogen in the nanocomposites. Moreover, TEM elemental mapping provides information about the abundance of Si, Co, C, N and S elements in zones. Nanocomposite (1) showed maximum uptake capacity of 192.3 and 224.5 mg/g for crystal violet CV and methyl orange MO dyes, respectively. Nanocomposite (2) showed a capacity of 94.1 and 225.5 mg/g for CV and MO dyes, respectively. Nanocomposite (4) obtained after treatment of (1) with crystal violet proved successful adsorption of CV. Co-HGC (5) prepared without addition of silica has a capacity for CV equal to 192 mg/g, while it is 769.2 mg/g with MO. Electrostatics and π–π interactions of graphite and cobalt species in the nanocomposites with aromatic rings of cationic and anionic dyes are responsible for the adsorption. Yan et al. was the best model to describe column kinetics. The thomas column adsorption model showed that the maximum uptake capacity of (1) was 44.42 mg/g for CV and 32.62 mg/g for MO. for a column packed with 0.5 gm of (1) and dye concentration of 100 mg/L at a flow rate of 1 mL/min. The column was recycled three times with no noticeable clogging or degradation of nanocomposites. Thus, Co-HGC@SiO2 adsorbents can be used efficiently to treat water contaminated with cationic and anionic dyes.  相似文献   

9.
The use of enterosorbents—materials which can be administered orally and eliminate toxic substances from the gastrointestinal tract (GIT) by sorption—offers an attractive complementary protection of humans against acute and chronic poisoning. In this study, we report the results of developing a microgranulated binary biomedical preparation for oral use. It was designed with a core-shell structure based on pectin with low degree of esterification as the core, and nanoporous activated carbon produced from rice husk, AC-RH, as the shell, designated as AC-RH@pectin. The adsorption properties of the synthesized materials were studied in aqueous solutions for the removal of lead (II) nitrate as a representative of toxic polyvalent metals and sodium diclofenac as an example of a medicinal drug. The composite enterosorbent demonstrated high adsorption capacity for both adsorbates studied. Adsorption kinetics of lead and diclofenac adsorption by AC-RH, pectin, and AC-RH@pectin, fitted well a pseudo-second-order model. According to the Langmuir adsorption isotherm model, the best fitted isotherm model, the maximum adsorption capacity, qmax, of AC-RH@pectin for diclofenac and for lead (II) was 130.9 mg/g and 227.8 mg/g, respectively. Although qmax of AC-RH for diclofenac, 537.6 mg/g, and qmax of pectin for lead (II), 245.7 mg/g, were higher, the maximum adsorption capacity of AC-RH for lead (II), 52.7 mg/g, was much lower than that of the composite AC-RH@pectin and the adsorption capacity of pectin for diclofenac was negligible. Therefore, the composite material AC-RH@pectin demonstrated substantial efficiency of removing both species which potentially defines it as a more universal enterosorbent suitable for treating poisoning caused by substances of different chemical nature.  相似文献   

10.
It is challenging work to develop a low-cost, efficient, and environmentally friendly Cr(VI) adsorbent for waste water treatment. In this paper, we used hemicelluloses from chemical fiber factory waste as the raw material, and prepared two kinds of carbon materials by the green hydrothermal method as adsorbent for Cr(VI). The results showed that hemicelluloses hydrothermally treated with citric acid (HTC) presented spherical shapes, and hemicelluloses hydrothermally treated with ammonia solution (HTC-NH2) provided spongy structures. The adsorption capacity of the samples can be obtained by the Langmuir model, and the adsorption kinetics could be described by the pseudo-second-order model at pH 1.0. The maximum adsorption capacity of HTC-NH2 in the Langmuir model is 74.60 mg/g, much higher than that of HTC (61.25 mg/g). The green hydrothermal treatment of biomass with ammonia solution will provide a simple and feasible way to prepare adsorbent for Cr(VI) in waste water treatment.  相似文献   

11.
This study evaluates the adsorption of diazinon from aqueous solutions onto coconut shell-modified biochar using a batch system. The amount of dosage and initial pH are the main parameters being studied to obtain maximum adsorption capacity of the probe molecules. The carbonized coconut shell biochar (BC1), activated coconut shell biochar (BC2), chemically modified phosphoric acid (BC3) and sodium hydroxide coconut shell biochar (BC4) were prepared and tested as variables in the adsorption experiment. The characteristic of biochar via SEM, EDX and BET analysis revealed the large porous of surface morphology and slight changes in the composition with high surface area (405.97 – 508.07 m2/g) by following the sequence of BC3 > BC2 > BC4. Diazinon removal percentage as high as 98.96% was achieved at pH 7 with BC3 as adsorbent dosing at 5.0 g/L. The high coefficient of determination, R2 with a small value of ERRSQ and χ2 error analysis present the BC1 (0.9971) and BC2 (0.9999) are best fitted with Freundlich isotherm indicates multilayer sorption onto heterogeneous surface whereby the Langmuir isotherm model is the best fitting is described of monolayer adsorption process onto the homogenous surface of BC3 and BC4. The results indicated the maximum adsorption capacity (qm) was achieved by BC3 with 10.33 mg/g, followed by BC2 (9.65 mg/g) in accordance to the Langmuir isotherm while Freundlich isotherm showed the highest adsorption capacity (kF) with 1.73 mg/g (L/mg)1/n followed by BC4 with 0.63 mg/g (L/mg)1/n at favorable adsorption isotherm (1 ≤ n ≤ 10). Thus, the results obtained depicted that BC2 and BC3 are highly efficient adsorbents and both exhibit great potential in removing diazinon from aqueous solutions.  相似文献   

12.
This work presents the results of the modification of lateral groups of chitosan (2-amino-2-desoxy-β-D-glucose) by the reaction with different amino acids (glycine, L-lysine, -glutamic acid and L-isoleucine) under acid catalysis. The Cu2+ adsorption capacity of pure chitosan and of the chemically modified chitosans were also evaluated. The modification reaction favored the amide formation of the C-2 carbon of the glycoside ring under the adopted reaction conditions: reaction time and temperature and using sulfuric acid as a catalyst. The Cu2+ adsorption kinetics and equilibrium response using pure chitosan and the chemically modified chitosans as adsorbents showes that the adsorption capacity of equilibrium depended on the initial ion concentration. The response of each adsorbent gave good correlation with Langmuir's isotherm model. The following maximum adsorption capacity constants were obtained: 172.4 mg/g for chitosan and 69.9, 34.4, and 26.7 mg/g for modified chitosan with glycine, L-glutamic acid, and L-lysine, respectively. The adsorptive capacity seems to be dependent on the length and complexity of the added group.  相似文献   

13.
以壳聚糖为载体, 3-氨基苯硼酸为功能单体对牛血清白蛋白进行了分子印迹的研究, 并对吸附过程进行Langmuir等温吸附模型的数据处理. 结果表明, 印迹聚合物上形成了对于模板分子有较高的吸附容量和选择性的识别位点, Langmuir等温吸附平衡常数为49.5 mL/mg, 结合位点的最大表观结合量为16.3 mg/g, 证明了该印迹聚合物对于牛血红蛋白和溶菌酶这些非模板蛋白的吸附不具有选择性.  相似文献   

14.
以SBA-15为模板, 蔗糖为碳源, 硝酸铁辅助催化合成磁性石墨化介孔碳复合材料(Fe/GMC). 利用X射线粉末衍射(XRD)、透射电子显微镜(TEM)、N2吸附-脱附(BET)、拉曼光谱等对反应产物进行了表征. 硝酸铁辅助催化可以在较低碳化温度(900℃)下实现介孔碳的部分石墨化, 并同步生成磁性Fe3O4颗粒, 合成的产物比表面积大、孔道有序、磁性强. 运用紫外-可见(UV-Vis)光谱考察了该复合材料对中药红花色素废水的吸附特性,复合材料的吸附速率快、吸附量高, 具有良好的脱色效果并能实现吸附剂的快速固液磁分离.  相似文献   

15.
In the present work, a cost-effective Indian jujube seeds derived activated carbon (IJSAC) prepared via o-phosphoric acid chemical activation, is studied for the sequestration of acriflavine (AF) and Victoria blue B (VB) from the aquatic environment. The activated carbon is characterized by Fourier transform infrared spectroscopy, N2-adsorption/desorption isotherm, scanning electron microscopy techniques and point of zero-charge measurement. The specific surface area (SBET) of 571 m2/g with a pore radius of 22.45 Å specifies mesoporous nature of the IJSAC. The implication of operational conditions on the adsorption of both dyes onto IJSAC assessed by batch methodology, establish the optimal conditions as dosage (1.5 and 2.5 g/L), contact time (60 min), pH (8 and 10), and initial concentration (130 and 140 mg/L) for AF and VB uptake, respectively. The Freundlich adsorption isotherm model (R2 = 0.99) appropriates the equilibrium data suggesting multilayer adsorption onto heterogeneous surface sites, while pseudo-second order (R2 = 0.95–0.99) is the best fit kinetic model. The liquid film and intraparticle diffusion modelling demonstrate that the adsorption process of these dyes is governed by both the steps. Maximum Langmuir adsorption capacity is 113.6 mg/g for acriflavine and 92.78 mg/g for Victoria blue B. Thermodynamic studies indicate endothermic and spontaneous adsorption of dyes. The adsorption mechanism for the uptake of AF and VB by IJSAC most probably involves hydrogen bonding, electrostatic and π-π interactions. Based on its high adsorption capacity, relatively faster kinetics, and reusability, IJSAC can be perceived as a proficient and effective adsorbent for cationic dyes removal from the liquid waste.  相似文献   

16.
Molecularly imprinted polymers were synthesized using mixed tea saponins as a template and acrylamide‐β‐cyclodextrin as a cofunctional monomer for the specific binding and purification of tea saponins from the defatted cake extract of Camellia oleifera. The adsorption properties of the prepared polymers were systematically evaluated including adsorption kinetics, adsorption isotherms, and selective recognition characteristics. It showed that the adsorption kinetics followed the pseudo first‐order kinetic model (R2 = 0.995) with an equilibrium time of 3 h, adsorption isotherm data fitted well with the Langmuir–Freundlich model (R2 = 0.984) with an adsorption capacity of 14.23 mg/g. The relative selectivity coefficient (k´) in the presence of the analogues glycyrrhizic acid and glycyrrhetinic acid were 1.16 and 17.21, respectively. The performance of the molecularly imprinted polymers as solid‐phase extraction materials was investigated and the results indicated that using acrylamide‐β‐cyclodextrin as a cofunctional monomer improved both the adsorption capacity and active sites stability of the imprinted polymers. The solid‐phase extraction using the polymers as packing materials was subsequently applied for the separation of tea saponins in raw C. oleifera press extract, and targets were obtained with a purity reaching 89%.  相似文献   

17.
Fe3O4/chitosan/poly(acrylic acid) (Fe3O4/CS/PAA) composite particles, which are reusable, biodegradable and of high adsorption capacity, have been prepared through polymerizing acrylic acid in chitosan and Fe3O4 nanoparticles aqueous solution. By varying in-feed mole ratio of carboxyl to amino group (nc/na) and reactant concentration, the average diameter of Fe3O4/CS/PAA composite particles can be controlled to vary from 100 to 300 nm. FT-IR, XRD and TEM were used to characterize Fe3O4/CS/PAA composite particles. Results showed that Fe3O4 was indeed incorporated into CS/PAA particles. The composite particles showed high efficient to remove copper ions (II) in aqueous solution. Adsorption kinetic studies showed that the adsorption process followed a pseudo-second-order kinetic model and the equilibrium data agreed well with the Langmuir model. The saturated adsorption capacity obtained from the experimental was 193 mg/g in close to proximity to the data 200 mg/g calculated from Langmuir model. The saturated adsorption capacity still retained 100 mg/g after three cycles of adsorption–desorption of copper ions (II).  相似文献   

18.
Exploring a new-family of carbon-based desalinators to optimize their performances beyond the current commercial benchmark is of significance for the development of practically useful capacitive deionization (CDI) materials. Here, we have fabricated a hierarchically porous N,P-doped carbon–graphene 2D heterostructure (denoted NPC/rGO) by using metal–organic framework (MOF)-nanoparticle-driven assembly on graphene oxide (GO) nanosheets followed by stepwise pyrolysis and phosphorization procedures. The resulting NPC/rGO-based CDI desalinator exhibits ultrahigh deionization performance with a salt adsorption capacity of 39.34 mg g−1 in a 1000 mg L−1 NaCl solution at 1.2 V over 30 min with good cycling stability over 50 cycles. The excellent performance is attributed to the high specific surface area, high conductivity, favorable meso-/microporous structure together with nitrogen and phosphorus heteroatom co-doping, all of which are beneficial for the accommodation of ions and charge transport during the CDI process. More importantly, NPC/rGO exhibits a state-of-the-art CDI performance compared to the commercial benchmark and most of the previously reported carbon materials, highlighting the significance of the MOF nanoparticle-driven assembly strategy and graphene–carbon 2D heterostructures for CDI applications.

MOF nanoparticle-driven assembly on 2D nanosheets produces the graphene–carbon heterostructure with hierarchically-porous P,N-doped layered architecture.  相似文献   

19.
The surface imprinting technique has been developed to overcome the mass‐transfer difficulty, but the utilization ratio of template molecules in the imprinting procedure still remains a challengeable task to be improved. In this work, specifically designed surface‐imprinted microspheres were prepared by a template‐oriented method for enantioseparation of amlodipine besylate. Submicron mesoporous silica microspheres were surface‐modified with double bonds, followed by polymerizing methacrylic acid to generate carboxyl modified mesoporous silica microspheres (PMAA@SiO2). Afterwards, PMAA@SiO2 was densely adsorbed with (S )‐amlodipine molecules to immobilize template molecules through multiple hydrogen bonding interactions. Then surface molecular imprinting was carried out by cross‐linking the carboxyl group of PMAA@SiO2 with ethylene glycol diglycidyl ether. The surface‐imprinted microspheres showed fast binding kinetics of only 20 min for equilibrium adsorption, and the saturation adsorption capacity reached 137 mg/g. The imprinted materials displayed appreciable chiral separation ability when used as column chromatography for enantioseparation of amlodipine from amlodipine besylate, and the enantiomeric excess of (S )‐amlodipine reached 13.8% with only 2.3 cm column length by no extra chiral additives. Besides, the imprinted materials exhibited excellent reusability, and this allows the potential application for amplification production of amlodipine enantiomer.  相似文献   

20.
《中国化学快报》2020,31(10):2835-2838
In this paper, a novel mesoporous silica gel evenly doped by Prussian blue nanoparticles (PBMSG) was successfully synthesized by using N,N-dimethylamide as template with a large Barrett-Emmett-Teller (BET) surface area of 505 m2/g and an average pore size of 2.9 nm. The static adsorption experiments showed that the equilibration time of PBMSG for Cs+ was about 30 min. The adsorption isotherm of PBMSG for Cs+ accorded with Langmuir model and the theoretical maximum adsorption capacity was 80.0 ± 2.9 mg/g. When the initial concentration of Cs+ was 1.00 mg/L, the adsorption partition coefficient Kd could reach 3.5 × 104 mL/g After adsorption, Cs+ could be eluted by dilute hydrochloric acid (pH 2) with an efficiency of 89.8%, while no K+, Fe3+, Fe2+ was eluted. PBMSG exhibited good selectivity toward Cs+ and Rb+. In the presence of high concentration of K+, the selective adsorption of PBMSG could change the mass ratio of K+, Rb+ and Cs+ from 96.63:0.83:1.00–1.12:0.73:1.00. The separation of Cs+ and Rb+ from K+ with similar concentration (100 mg/g) was realized by column experiment. This indicated that PBMSG was suitable for rapid recovery of low concentration of rubidium and cesium from complex matrixes, such as wastewater and salt lake brine, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号