首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An amide-containing stratified self-assembled film is grafted on a silicon surface by a simple two-step method. First, N-[3-(trimethoxylsilyl)propyl]ethylenediamine (DA) molecules are self-assembled on silicon surfaces followed by deriving with stearoyl chloride (STC) through a surface coupling reaction. The films are characterized by means of contact angle measurement, ellipsometry, and attenuated total reflectance Fourier transformed infrared (ATR-FTIR) spectra. STC forms an ordered and hydrophobic film over the DA layer with a water contact angle of nearly 110 degrees. A microtribological study of the films is carried out on an atomic force microscope (AFM), and the wear-resistant property is tested on a ball-on-plate tribometer. Compared to the films in our previous study, the friction-reducing and load-affording abilities of the film are greatly improved. We contribute the improvements to the existence of two layers of hydrogen bonds, which can enhance the stability of the film by double in-plane cross-linking.  相似文献   

2.
Various aspects of native and model biological membrane wettability are discussed. Among others hydration of mono-, bi-, and multi-layers of lipids as well as wettability of macroscopic surfaces of solid supported lipid films was investigated via apparent contact angle measurements and calculation of the apparent surface free energy of the films. The effects of relative humidity on the layer hydration and contact angle changes are also discussed. Finally, the effect of liposomes and enzymes (due to the hydrolysis reactions) on the hydrophobic/hydrophilic character of the film surfaces is overviewed.  相似文献   

3.
In this study, the soft embossing method is proposed to fabricate periodical microgrooved structure on polyimide surfaces. These microgrooved polyimide surfaces are assembled to form liquid-crystal cells. It is found that the director of liquid crystals uniformly aligns along the groove direction even when the groove width is as high as 3 microm. The anchoring energy of these microgrooved polyimide surfaces is higher than that of the typical rubbed surfaces. The pretilt angle of liquid crystals is adjusted by tuning the surface polarity of the polyimide alignment layer, which is identified by the advancing contact angle of water. The surface polarity of polyimide alignment layers is manipulated by simply mixing two kinds of polyimide: a more hydrophilic one and a more hydrophobic one. It is found that the pretilt angle of liquid crystals increases along with the advancing contact angle of water on the alignment layer under the condition of a fixed surface topography.  相似文献   

4.
A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows.  相似文献   

5.
Sol–gel coating of metal oxides on polymer substrates is a useful process to fabricate various organic–inorganic hybrid materials under mild conditions. However, this process is hardly applicable to pristine polyimide (PI) films because their surfaces do not display effective functional groups for metal oxide coatings. In this study, we firstly examined direct sol–gel coating of titania thin layers on unmodified PI film surfaces. The results confirmed homogeneous, ultrathin titania layer coating and showed that the thickness and microscopic morphology of the titania layers were affected by titanium alkoxide concentrations in the spin coating solutions. We next investigated titania layer coating on surface-modified PI films that prepared using alkaline hydrolysis, which generated carboxylic acid groups on the film surfaces. Optimal hydrolysis time was determined using FT-IR spectroscopy and contact angle measurements. After sol–gel titania coating on the hydrolyzed PI film surfaces, the Scotch tape test was conducted to evaluate adhesion strength between the titania layers and PI film surfaces. Morphological observations of the sample surfaces after the tests clearly showed that surface modification of PI films increased titania layer adhesions. Effect of hydrothermal treatments on film formability and adhesion strength between titania-PI film interfaces was also evaluated.  相似文献   

6.
The fractal characterizations of amorphized-silicon (a-Si) surfaces under low-energy ion irradiations are presented. The crystalline Si surfaces have been irradiated with Si ions having different energy of 35, 50, 75, and 100 keV at a fixed fluence of 2 × 1015 ions-cm−2. The samples have been characterized by means of using Raman spectroscopy, Channeling-Rutherford backscattering spectrometry (C-RBS), and atomic force microscopy (AFM) techniques. The ion irradiation leads to the amorphization of Si near surface and subsurface region, as confirmed by Raman and C-RBS measurement. The AFM analysis shows that the ion irradiation also leads to the formation of nanodots on the surface and size of the dots increases with increasing of the ion energy. The fractal analysis has been performed using AFM images in order to get the significant evidence about nanodot formations and the correlation inside the surface microstructures. The kinetic roughening and surface smoothening, due to dissipation of kinetic energy of ions through collision cascades of the surface atoms, lead to the formation of dot-like structures.  相似文献   

7.
A novel method coupling the Langmuir-Blodgett (LB) deposition of silica particles and the formation of a self-assembled monolayer (SAM) of alkylsilane is proposed for fabricating hydrophobic surfaces. The LB deposition and the SAM are supposed to confer the substrate surface roughness and low surface energy, respectively. By controlling the hydrophobic-hydrophilic balance of the silica particle surface through the adsorption of surfactant molecules, deposition of monolayers consisting of hexagonally close-packed arrays of particles on a glass substrate can then be successfully conducted in a Langmuir trough. LB particulate films with a particle layer number up to 5 were thereby prepared. A sintered and hydrophobically finished particulate film with roughness factor of 1.9 was finally fabricated by sintering and surface silanization. Effects of particle size and particle layer number on the wetting behavior of the particulate films were systematically studied by measuring static and dynamic water contact angles. The experimental results revealed that a static contact angle of about 130 degrees resulted from the particulate films regardless of the particle size and particle layer number. This is consistent with the predictions of both the Wenzel model and the Cassie and Baxter model in that roughness of a hydrophobic surface can increase its hydrophobicity and a switching of the dominant mode from Wenzel's to Cassie and Baxter's. In general, an advancing contact angle of about 150 degrees , a receding contact angle of about 110 degrees , and a contact angle hysteresis of about 40 degrees were exhibited by the particulate films fabricated.  相似文献   

8.
The surfaces of poly(methyl methacrylate) (PMMA) films modified by O2H2O and H2O radio-frequency glow discharge plasmas were studied using electron spectroscopy for chemical analysis (ESCA or XPS), low energy ion scattering (LEISS or ISS), Fourier transform IR spectroscopy (FTIR) with attenuated total reflectance (ATR) sampling, and critical surface energy from contact angle measurements. The extent and nature of modification with respect to promotion of a hydrophilic surface compared to the hydrophobic surface of the unmodified PMMA has been probed. Results show drastic decreases in C/O ratio at the near surface, which increases to that of the unmodified PMMA as deeper cross sections are analyzed. In addition peak fitting of ESCA data correlated with FTIR functional group information allows for the qualitative and quantitative analysis of the resulting bonding and structure of the modified layer. From these results combined with the polarity and surface energy differences obtained from contact angle measurements, the structural changes are discussed with respect to plasma reaction mechanisms and differences in the structure of the modified polymer films.  相似文献   

9.
ZnO/NiO thin films, each of thickness 100 nm, were deposited on Si(100) substrate by pulsed laser deposition method. The resulting heterojunction, ZnO/NiO/Si, was irradiated by 120 MeV Au9+ ions and characterized by grazing incidence X‐ray diffraction (GIXRD), Raman spectroscopy, and atomic force microscopy (AFM). The GIXRD confirmed the presence of both NiO and ZnO in the samples. Ion irradiation induced suppression of crystalline nature, and the recrystallization of the same occurred at the fluence of 1 × 1013 ions cm−2. The occurrence of most intense band at 302 cm−1 in Raman spectra corresponds to the symmetric stretching vibration of ZnO. The linear shift of stretching mode of ZnO with ion fluence could be associated with the effect of compressive stress in the material. AFM analysis of the films indicated that the rms roughness increased when the film is irradiated at a fluence of 1 × 1012 ions cm−2. Beyond this fluence, the value of roughness decreased up to fluence of 1 × 1013 ions cm−2 and increased thereafter. To see the effect of the stress of buffer layer on the surface layer, we calculated the stress for NiO layer with ion fluence form the lattice parameter. Comparing the stress of buffer layer with roughness of surface layer at the given fluence, we can say that the compressive stress in the buffer layer could possibly control the roughness of the surface layer.  相似文献   

10.
The hydrophobicity of surfaces has a strong influence on their interactions with biomolecules such as proteins. Therefore, for in vitro studies of bio-surface interactions model surfaces with tailored hydrophobicity are of utmost importance. Here, we present a method for tuning the hydrophobicity of atomically flat mica surfaces by hyperthermal Ar ion irradiation. Due to the sub-100 eV energies, only negligible roughening of the surface is observed at low ion fluences and also the chemical composition of the mica crystal remains almost undisturbed. However, the ion irradiation induces the preferential removal of the outermost layer of K(+) ions from the surface, leading to the exposure of the underlying aluminosilicate sheets which feature a large number of centers for C adsorption. The irradiated surface thus exhibits an enhanced chemical reactivity toward hydrocarbons, resulting in the adsorption of a thin hydrocarbon film from the environment. Aging these surfaces under ambient conditions leads to a continuous increase of their contact angle until a fully hydrophobic surface with a contact angle >80° is obtained after a period of about 3 months. This method thus enables the fabrication of ultrasmooth biological model surfaces with precisely tailored hydrophobicity.  相似文献   

11.
The influence of a first (anchoring) layer and film treatment on the structure and properties of polyelectrolyte multilayer (PEM) films obtained from polyallylamine hydrochloride (PAH) and polysodium 4-styrenesulfonate (PSS) was studied. Branched polyethyleneimine (PEI) was used as an anchoring layer. The film thickness was measured by ellipsometry. Complementary X-ray reflectometry and AFM experiments were performed to study the change in the interfacial roughness. We found that the thickness of the PEM films increased linearly with the number of layers and depended on the presence of an anchoring PEI layer. Thicker films were obtained for multilayers having PEI as the first layer comparing to films having the same number of layers but consisting of PAH/PSS only. We investigated the wettability of PEM surfaces using direct image analysis of the shape of sessile water drops. Periodic oscillations in contact angle were observed. PAH-terminated films were more hydrophobic than films with PSS as the outermost layer. The effect of long time conditioning of PEM films in solutions of various pH's or salt (NaCl) concentrations was also examined. Salt or base solutions induced modification in wetting properties of the polyelectrolyte multilayers but had a negligible effect on the film thickness.  相似文献   

12.
We report some preliminary results on the morphology of thin N,N -dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) films. When deposited on a glass substrate, DMOAP forms a mono- or multi-layer structure parallel to the substrate. The surface topography of the film is probed by atomic force microscopy. In general, the free surface of such a film is not flat and smooth. Islands and holes are formed on the free surface of the films when a sufficiently flat substrate is used. The thin film surface topography depends strongly on the nature of the bare substrate, the curing conditions, and the immersion time of the substrate in the DMOAP solution. The film is always rougher than the bare substrate used. Annealing roughens the surface of the alkoxysilane thin films deposited on a glass substrate. For films on glass plates covered with an indium tin oxide layer, annealing has minor effects. The surface topography affects the microstructure of homeotropic smectic samples.  相似文献   

13.
Flexible honeycomb gold films supported by polymer sheets are fabricated by using polystyrene particle monolayers. The surfaces of the flexible gold films are covered with self-assembled monolayers (SAMs) of hydrophobic or hydrophilic thiol compounds, and the wettability of the modified surface is evaluated by measurements of the contact angles of water droplets. The contact angle of the film covered with hydrophobic SAM is ca. 150 degrees, which is greater than the value of 112 degrees for a flat gold surface, while the values for hydrophilic SAM are below 10 degrees.  相似文献   

14.
Thermodynamic treatment of thin liquid films in Part III of this series was applied to foam films stabilized by sodium dodecyl sulfate. Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed films at the film surfaces and transition between the black films were studied by measuring film thickness and contact angle. A discontinuous change in the thickness and a break on the contact angle vs. concentration curve appeared at the transition. Judging from the phase diagram of adsorption, sodium chloride and sodium dodecyl sulfate are a little miscible in the adsorbed films. The miscibility was ascribed to specific interaction between sodium ion and dodecyl sulfate ion in the adsorbed films. The miscibility in an adsorbed film was compared between the film surface and meniscus and between the common black and Newton black films.  相似文献   

15.
In context to the ion induced surface nanostructuring of metals and their burrowing in the substrates, we report the influence of Xe and Kr ion‐irradiation on Pt:Si and Ag:Si thin films of ~5‐nm thickness. For the irradiation of thin films, several ion energies (275 and 350 keV of Kr; 450 and 700 keV of Xe) were chosen to maintain a constant ratio of the nuclear energy loss to the electronic energy loss (Sn/Se) in Pt and Ag films (five in present studies). The ion‐fluence was varied from 1.0 × 1015 to 1.0 × 1017 ions/cm2. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The AFM and SEM images show ion beam induced systematic surface nano‐structuring of thin films. The surface nano‐structures evolve with the ion fluence. The RBS spectra show fluence dependent burrowing of Pt and Ag in Si upon the irradiation of both ion beams. At highest fluence, the depth of metal burrowing in Si for all irradiation conditions remains almost constant confirming the synergistic effect of energy losses by the ion beams. The RBS analysis also shows quite large sputtering of thin films bombarded with ion beams. The sputtering yield varied from 54% to 62% by irradiating the thin films with Xe and Kr ions of chosen energies at highest ion fluence. In the paper, we present the experimental results and discuss the ion induced surface nano‐structuring of Pt and Ag and their burrowing in Si. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Water vapor adsorption and heats of water wetting are studied for hydrophilic quartz, hydrophobic-hydrophilic talc, and hydrophobized Silochrom samples. Water contact angles on the materials under examination are found. The surface thermodynamic parameters of the sorbents are calculated from the data obtained. It is shown that boundary water layers on hydrophilic quartz surface are ordered to a higher extent, while those on hydrophobic basal surfaces of talc particles and hydrophobic surfaces of modified Silochrom samples are ordered to a lower extent relative to liquid water. An empirical equation relating the surface pressure of water films adsorbed on hydrophilic high-energy surfaces with the surface free energy of the latter is proposed. The values of surface free energy are estimated from this equation for a number of important hydrophilic adsorbents.  相似文献   

17.
The wetting by water of the adsorbed layer of β-casein on hydrophobised silica and pure (hydrophilic) silica surface was investigated by dynamic contact angle measurements based on the Wilhelmy plate principle. The results are discussed in relation to adsorption data obtained for the protein on similar surfaces by in situ ellipsometry. β-casein adsorption on a hydrophobic surface leads to a significant decrease of the contact angle, in particular in terms of the receding contact angle, which decreased by about 70°. This indicates a strong shielding of the hydrophobic surface by the hydrophilic domain of β-casein. Adding a specific enzyme, endoproteinase Asp-N, which previously has been proposed to remove a large fraction of the hydrophilic segments, results in a significantly decreased wettability of the solid surface. The layer is now more hydrophobic and the hysterises is much smaller. The receding contact angle after the proteolysis is roughly 70°. The results are consistent with the hypothesis that β-casein adsorbs at the hydrophobic surface to form a monolayer with the hydrophobic part of the protein anchored at the surface, leaving the hydrophilic segments dangling into the solution. Less dramatic effects are observed in terms of changes of the wettability on the hydrophilic surface. The surface is still quite hydrophilic both after adsorbing β-casein and exposing the layer to endoproteinase Asp-N. These results confirm the differences in the structure of β-casein layers on the hydrophobic and hydrophilic surface.  相似文献   

18.
The molecular orientation of very thin films on solid substrates can be determined quantitatively by measuring the polarized infrared (IR) absorption spectra of samples as a function of angle of incidence. The quantitative molecular orientation is derived by fitting the incident angle dependence and the dichroic ratio with theoretical calculations. We applied this method to a technologically important system: liquid crystal (LC)/rubbed polyimide film. To understand the alignment mechanism of LC molecules in contact with rubbed polyimide films, we have quantitatively determined the molecular orientation of rubbed polyimide films and a surface LC layer in contact with a rubbed polyimide film. In this paper two relations are discussed: (1) correlation between the inclination angle of polyimide backbone structures in rubbed films and the pretilt angle of bulk LC in contact with them, and (2) relation among the molecular orientation of a rubbed polyimide film and those of surface and bulk LC layers in contact with it.  相似文献   

19.
Advancing and receding contact angles of water, formamide and diiodomethane were measured on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on three different solid supports—glass, mica and poly(methyl methacrylate). Up to five statistical monolayers were deposited on the surfaces by spreading DPPC solution. It was found that even on five statistical DPPC monolayers, the hysteresis of a given liquid depends on the kind of solid support. Also on the same solid support the contact angle hysteresis is different for each probe liquid used. The AFM images show that the heights of roughness of the DPPC films cannot be the primary cause of the observed hysteresis because the heights are too small to cause the observed hystereses. It is believed that the hysteresis is due to the liquid film present right behind the three-phase solid surface/liquid drop/gas (vapour) contact line and the presence of Derjaguin pressure. The value of contact angle hysteresis depends on both the solid surface and liquid properties as well as on intermolecular interactions between them.  相似文献   

20.
Poly(dimethylsiloxane) (PDMS) substrates are used in many applications where the substrates need to be elongated and various treatments are used to regulate their surface properties. In this article, we compare the effect of three of such treatments, namely, UV irradiation, water plasma, and plasma polymerization, both from a molecular and from a macroscopic point of view. We focus our attention in particular on the behavior of the treated surfaces under mechanical stretching. UV irradiation induces the substitution of methyl groups by hydroxyl and acid groups, water plasma leads to a silicate-like layer, and plasma polymerization causes the formation of an organic thin film with a major content of anhydride and acid groups. Stretching induces cracks on the surface both for silicate-like layers and for plasma polymer thin coatings. This is not the case for the UV irradiated PDMS substrates. We then analyzed the chemical composition of these cracks. In the case of water plasma, the cracks reveal native PDMS. In the case of plasma polymerization, the cracks reveal modified PDMS. The contact angles of plasma polymer and UV treated surfaces vary only very slightly under stretching, whereas large variations are observed for water plasma treatments. The small variation in the contact angle values observed on the plasma polymer thin film under stretching even when cracks appear on the surface are explained by the specific chemistry of the PDMS in the cracks. We find that it is very different from native PDMS and that its structure is somewhere between Si(O2) and Si(O3). This is, to our knowledge, the first study where different surface treatments of PDMS are compared for films under stretching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号