首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Equilibrium contact angles of melted geranium have been measured at fused quartz surfaces. The surfaces were preliminarily grinded, polished, and, in some cases, etched. Then, the roughness coefficients are determined for the relief profile and the surface itself by optical interferometry using a NanoMap 1000 WLI profilometer. The contact angle has been found to vary in a range of 147°–164° depending on the method of surface pretreatment. The measured values of the contact angles agree with the data of other researchers. At the same time, the analysis of the obtained data has led to the conclusion that Wenzel’s equation, which relates the contact angles at smooth and rough surfaces, is not valid for germanium droplets on quartz surface.  相似文献   

2.
介绍了利用激光共聚焦显微镜对不同粗糙度标准样块表面进行粗糙度测量时,各试验参数对测量结果的影响. 对于标准样块,测得的面粗糙度(Sa)符合测量要求(示值误差≤5%),最终确定合理的试验参数. 方法不但具有非接触、高分辨率、测量速度快的特点,同时可以获得被测表面的三维形貌,可以更加直观的对表面进行评价,使激光共聚焦显微镜能够更好的应用于工业材料表面轮廓分析领域.  相似文献   

3.
Understanding the mechanisms of biomineralization continues to be an important area of research in physics, chemistry, materials science, medicine, and dentistry due to its importance in the formation of bones, teeth, cartilage, etc. Stimulated by these fascinating natural examples, as well as by certain others such as shells and corals, attempts are being made to develop synthetic, biomimetic nanocomposites by simulating the basic principles of biomineralization. We have grown bio-like hydroxyapatite layers in vitro on substrates of stainless steel, silicon, and silica glass by using a biomimetic approach (i.e., immersion in a supersaturated simulated body fluid). Hydroxyapatite is one of the most common natural biomaterials and an important structural component of bones and teeth. Metal substrates are of interest for hard tissue implants, while semiconductors and glasses are under investigation for their use as biosensors. Using classical techniques such as stylus profiling, atomic force microscopy (AFM), and scanning and transmission electron microscopy (SEM and TEM), it was found difficult, ambiguous, destructive, or time-consuming to measure the topography, thickness, and profile of the grown heterogeneous, thick, and rough hydroxyapatite layers. On the other hand, coherence probe microscopy based on white light scanning interferometry and image processing provides rapid, contactless measurements of surface roughness and does not need any sample preparation. The results obtained have shown a typical layer thickness of up to 20 microm and an average root-mean-square (rms) roughness of about 4 mum. The hydroxyapatite investigated in this work presents nonetheless a challenge for this technique because of its semi-translucency, high surface roughness, and the presence of cavities formed throughout its volume. This results in a variable quality of fringe pattern, ranging from classical fringes (on a smooth surface) to complex fringes displaying properties of white light speckle (on a rough surface), together with multiple fringe signals along the optical axis in the presence of buried layer interfaces, which in certain configurations affect the axial and lateral precision of the measurement. In this paper we present the latest results for optimizing the measurement conditions in order to reduce such errors and to provide additional useful information concerning the layer.  相似文献   

4.
A comprehensive analytical model is proposed to provide a relationship between the macroscopic roughness and contact angle, which is used to develop macroscopic rough surface and to create biomimetic superhydrophobic surfaces. Using chemical surface modification of steel wires, an artificial hydrophobic surface was prepared. A steel mesh mimicking the Asparagus setaceus leaf was created by lowing the surface energy and enhancing macroscopic surface roughness. Water contact angles as high as 129.0° were achieved on the steel mesh with 200μm×200μm pore size. Bad agreement between the predictions based on the original Cassie-Baxter model and experiments was obtained. The version of the Cassie-Baxter model in current use could not be applied to this problem since the roughness magnitude changes from nano/microscopic to macroscopic. A new model, called macroscopic Cassie-Baxter (MCB) model, is constructed by the introduction of contact area density (δ) to original Cassie-Baxter model. It is shown that the measured data is in good agreement with the predicted data based on the MCB model. This model not only for solving macroscopic hydrophobic problems of meshes, but also can be used to solve that of other materials with macroscopic roughness.  相似文献   

5.
Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both ‘soft’ and solid thin films. ‘Soft’ polymer thin films of polystyrene and poly(styrene–ethylene/butylene–styrene) block copolymer were prepared by spin‐coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two‐layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80–130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In this study a relationship between the surface and textural properties of carbon blacks and the gasification process induced thermally in air is noted. A temperature jump method was used to follow the gasification in air and to establish the relevant Arrhenius parameters. This can be associated with the activity of ‘basal’ plane carbon atoms as well as ‘edge’ carbon atoms at the surface. This is based on a model of carbon black structure consisting of the irregular packing of small graphite carbon structures. The carbon black surface was measured using a single measurement of adsorption based essentially on the BET volumetric method. The carbon black surface had a rate of oxidation per unit are which clearly indicated that the lower area carbon blacks had a predominately active area of ‘edge’ atoms at the surface while the surface of the higher area carbon blacks had a predominate amount of ‘basal’ plane graphite carbon atoms.  相似文献   

7.
The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold.  相似文献   

8.
Powder coatings found a wider use in corrosion protection of steel structure. In Europe very often double-layer systems are used, based on an adhesion promoting epoxy (EP) primer and a weathering stable top coat, mostly polyester (SP) sometimes EP/SP-hybrid powders. An interesting development is the use of zinc filled EP powders as primer to offer a cathodic protection to the steel surface. Powder systems with and without zinc were compared to proved coating systems based on liquid paint materials, where powder coating systems showed results comparable to these systems. Besides many advantages of powder coatings for corrosion protection there are still some problems. The workshops carring out the powder coating have to be in control of the surface pretreatment like chromating, but espescially phosphating and the work with the chromate-free pretreatment methods for galvanized steel. As always in the field of corrosion protection it is the surface pretreatment and preparation which determines the quality of the whole coating system decisively. This problem can be solved by appropriate working. In some years the problem with the general maintenance of powder coatings after weathering and ageing will be actual. This problem should be solved because of the homogeneous coatings on larger areas. Of importance will be the adhesion on the old coating and the appearance of the maintenance coating. The touch up of smaller parts as transport damages will be much more difficult in order to the appearance.  相似文献   

9.
B‐doped Si multiple delta‐layers (MDL) were developed as certified reference materials (CRM) for secondary ion mass spectrometry (SIMS) depth profiling analysis. Two CRMs with different delta‐layer spacing were grown by ion beam sputter deposition (IBSD). The nominal spacing of the MDL for shallow junction analysis is 10 nm and that for high energy SIMS is 50 nm. The total thickness of the film was certified by high resolution transmission electron microscopy (HR‐TEM). The B‐doped Si MDLs can be used to evaluate SIMS depth resolution and to calibrate the depth scale. A consistency check of the calibration of stylus profilometers for measurement of sputter depth is another possible application. The crater depths measured by a stylus profilometer showed a good linear relationship with the thickness measured from SIMS profiling using the calibrated film thickness for depth scale calibration. The sputtering rate of the amorphous Si thin film grown by sputter deposition was found to be the same as that of the crystalline Si substrate, which means that the sputtering rate measured with these CRMs can be applied to a real analysis of crystalline Si. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The corrosion inhibition property of expired Doxofylline (DF) was tested for soft steel in 1 M hydrochloric acid solution by adopting mass change and electrochemical measurement techniques. At 200 ppm concentration of DF, maximum of 72.84% inhibition efficiency was noticed. However with addition of 50 ppm of KI, it enhances the percentage inhibition efficiency up to 88.48%. DF resists both anodic and cathodic reactions and functioned as mixed-inhibition mechanism. At higher temperatures, electrochemical impedance response noticed that, the diameter of the semicircle decreases as solution temperature increases As a result, in both absence and presence of the inhibitor the Rp values were decreased. Quantum chemical studies revealed about structural and electronic effects in relation to the inhibition efficiencies. Surface morphology of both inhibited and corroded soft steel was assessed by means of scanning electron microscopy (SEM)) and atomic force microscope (AFM). The SEM images of soft steel reflect the inhibitive property of the DF at optimized concentration and a significant decrease in the surface roughness was observed (surface roughness was reduced from 606 nm to 294 nm as measured by AFM)). UV-Visible absorption peaks signifies that CC and CO groups from the inhibitor were interacted with iron cations, which is the evidence for the formation protective film over the soft steel surface.  相似文献   

11.
The influence of surface structure of technical materials on results and statements of surface analytical methods has been investigated. Especially surface roughness as a typical property of rolled products has been observed. For this purpose samples of steel (technical surface, roughness up to 5 m) and silicon wafers (polished surface) have been analyzed by SNMS and GDOS in order to get information about changes of the surface roughness as function of the sputtering time and their influence on the statements about the depth profiles obtained.  相似文献   

12.
The healing of scratches on the surface of vitreous selenium was observed over a period of nine weeks, and from the data the solid surface tension of vitreous Se is estimated to be (100 ± 20) dyne/cm at 38.8°C, about the same as that of the liquid at the melting point. This value is three times as large as the critical surface tension determined from contact angle measurements, which indicates that for vitreous Se in contact with organic liquids, the solid—liquid interfacial tension is about two-thirds as much as the solid surface tension. The present method of measurement can probably be used to determine the solid surface tension of other polymers, and by measuring the healing of scratches on a solid immersed in a liquid the method could be used to determine the solid—liquid interfacial tension.  相似文献   

13.
A new type of latex modified phenolic resin was used as an organic binder for hybrid fibers that were used as reinforcement materials to fabricate organic brake pads that were employed in railroad passenger-coaches. Braking performance of the pad was evaluated on a full-scale bench tester according to Standard of China Railway Ministry TB/T 3118-2005. The results indicated that the pad completely met the corresponding requirements. Sixteen pairs of the pad were applied in a railroad passenger coach whose mileage was 1116 km everyday. Thickness of the pad and matched discs were measured on-line and the morphological characteristics of the pad and discs were observed. The results showed that the hybrid fibers reinforced brake pad had stable braking performance. After being applied in the passenger coach for 10 months (total distance of 320 000 km), the pad’s rubbing surface was quite trim, no crack failure, edge-detachment and scratches were observed on its surface, and no hot-spots or heat-cracks were observed on the matched brake discs. It was suggested that the surface film formed on the pad, which had a comparatively steady chemical composition, played an important role for the stable braking performance.  相似文献   

14.
Studies have been carried out on chemical treatments of jute fibers in order to hinder moisture absorption, which causes incompatibility with a non-polar polymer, and to increase the surface roughness for mechanical interlocking. The objective of this research is to improve the interfacial adhesion between jute fibers and polypropylene by oxidative treatments. On this basis, jute fibers were treated with potassium dichromate (PD), potassium permanganate (PM) and sodium perborate trihydrate (SP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy were used to characterize jute fibers. The effects of chemical treatments were also revealed by assessment of moisture absorbability, yarn tensile properties and interfacial shear strength with polypropylene. FTIR and XPS analyses confirmed oxidative modification of jute fibers using any of the surface treatments. It was observed that the proportion of O=C groups increased, whereas that of O–H groups decreased after oxidative modifications. Tensile strength and elasticity modulus results decreased after oxidative treatments, whereas PD, PM and SP enhanced the interfacial shear strength values by 25, 61 and 71 %, respectively. Only SP treatment influenced moisture absorbability results significantly. The surface roughness of untreated jute fibers shows increments after chemical treatments due to partial removal of surface cementings. According to the findings obtained from surface characterization methods and physical tests, the highest interfacial adhesion with better compatibility with polypropylene was achieved after SP treatment by providing the highest surface roughness values and hydrophobic character of jute fiber.  相似文献   

15.
In this work we report molecular simulation results for argon and krypton adsorption on atomistic models of templated mesoporous silica materials. These models add atomistic levels of detail to mesoscale representations of these porous materials, which were originally generated from lattice Monte Carlo simulations mimicking the synthesis process of templated mesoporous silicas. We generate our atomistic pore models by carving out of a silica block a ‘mathematically-smooth’ representation of the pores from lattice MC simulations. Following that procedure, we obtain a model material with mean mesopore and micropore diameters of 5.4 nm and 1.1 nm, respectively (model A). Two additional model materials were considered: one with no microporosity, and with mesopores similar to those of model A (model B), and a regular cylindrical pore (model C). Simulation results for Ar and Kr adsorption on these model materials at 77 K and 87 K shows that model A provides the best agreement with experimental data; however, our results suggest that fine-tuning the microporosity and/or the surface chemistry (i.e., by decreasing the density of OH groups at the pore surface) of model A can lead to better agreement with experiments. The filling of the mesopores in model materials A and B proceeded via a classical capillary condensation mechanism, where the pores fill at slightly different pressures. This observation contrasts with what was observed in our previous study (Coasne, et al. in Langmuir 22:194–202, 2006), where we considered atomistic silica mesopores with an important degree of surface roughness at length scales below 10 Å, for which we observed a quasi-continuous mesopore filling involving intermediate phases with liquid-like “bridges” and gas-like regions. These results suggest that pore surface roughness, and other morphological features such as constrictions, play an important role in the mechanism of adsorption and filling of the mesopores.  相似文献   

16.
Cyclonic atmospheric pressure plasma is developed to synthesize the organosilicon nano-coating on 316 L stainless steel surface with hexamethyldisilazane (HMDSN) and HMDSN/N2 monomers. The modified 316 L stainless steel surface characteristics of cyclonic plasma deposited organosilicon nano-coating were evaluated by the static contact angle measurement, FTIR, SEM, AFM, and XPS detections. The chemical analysis with FTIR and XPS depicts that cyclonic plasma deposited nano-coating obtains the relatively inorganic characteristics. The surface morphological determination with SEM and AFM refers cyclonic plasma deposited 316 L stainless steel surface roughness alteration with switching monomer inputs. This study shows the potential of chamber-less deposition to create the plasma deposited organosilicon nano-coating for 316 L stainless.  相似文献   

17.
The efficiencies of contamination source, defined in ISO Report 7506-1, were experimentally determined for such materials as flooring, polyethylene, smear-tested filter paper and stainless steel plate. 5 nuclides of 147Pm, 60Co, 137Cs, 204Tl and 90Sr-Y were used to study beta-ray energy dependence of the efficiency, and 241Am as alpha-ray emitter. The charge-up effect in the measurement by a window-less 2 pi-proportional counter was evaluated to obtain reliable surface emission rate. The measured efficiencies for non-permeable materials, except for two cases, are more than 0.5 even for 147Pm. The ISO recommendations were shown to be conservative enough on the basis of present results.  相似文献   

18.
An electrochemical atomic force microscope was used to characterize the early stage of corrosion of an X100 pipeline steel in bicarbonate solutions with varied concentrations by synchronous measurements of electrochemical potential of the steel and its topographic evolution with time. Upon immersion of the steel in 0.01 M NaHCO3 solution, both electrochemical potential and topographic profile are associated with the dissolution of air‐formed oxides present on the steel surface. The potential drops and the surface roughness increases rapidly. When corrosion of the steel occurs, the potential further drops and the surface roughness of the steel increases gradually. As the steel corrosion achieves a steady state, the generation of corrosion products reaches a dynamic equilibrium state. The surface roughness maintain an approximately stable value. In solutions containing increased bicarbonate concentrations, such as 0.1 M and 0.5 M NaHCO3, the steel can be passivated. The formed passive film can eliminate some surface features and improves the surface roughness. The topographic profile of the steel surface in 0.5 M NaHCO3 solution is smoother than that in 0.1 M solution. The surface features within 20 nm become eliminated after 4500 s of immersion in 0.1 M NaHCO3 solution, while larger features within 50 nm in size are eliminated in 0.5 M NaHCO3 solution in the same time period. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The ISO technical report 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials by using surface analysis tools. In addition, both general issues and challenges associated with characterizing nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometers, the distinctions among ‘bulk’, ‘surface’, and ‘particle’ analysis blur. This technical report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that are in the domain of ISO/TC 201 including Auger electron spectroscopy, X‐ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The surface of a biomaterial reacts in contact with biological fluids. Hydrogels are used to prepare biomaterials. The surface roughness of materials can be explored by several techniques. However, when considering hydrogels, the surface examined in the dry state does not reflect the final conformation. How the surface roughness is affected by swelling has been little explored by quantitative methods. We have evaluated the surface roughness of poly(2-hydroxyethyl methacrylate) (i.e., pHEMA) by image analysis. Images of disks, prepared from linear pHEMA, were obtained on a light microscope after various incubation times in saline. Fractal texture analysis was done on images to determine the fractal dimension D. In this study, D exhibited a significant decrease during swelling and was highly correlated with the swelling ratio (r2 = 0.994, p < 0.00001). Water uptake by the surface of the polymer affected the surface roughness. Image analysis using fractal algorithms appears to be the most interesting technique for the quantitative exploration of surfaces of hydrated materials that cannot be measured by conventional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号