首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Owing to the high hardness and hydrogen passivation of carbon bonds, hydrogenated diamond-like carbon (a-C:H) film has shown promising potential to achieve ultra-low friction and wear on steel surfaces. Here, a-C:H film was successfully deposited on 9Cr18Mo steel via programmable high power pulse magnetron sputtering and potential application for industrial was evaluated. The a-C:H films against different mating materials of GCr15 steel balls, Al2O3, Si3N4, ZrO2, and a-C:H-coated GCr15 balls all showed ultra-low friction under a normal load of 5 N in a dry ambient air environment. Among them, self-mating tribo-system a-C:H films on steel surfaces and a-C:H-coated steel balls achieve best friction performance; the principal reason is that both contacting surfaces coated with a-C:H film have the lower electron affinities compared with other tribo-systems. However, the differences of coefficient of friction (COF) for uncoated-GCr15, Al2O3, ZrO2, Si3N4, and a-C:H(GCr15) balls can be attributed to different sizes of clustering in wear debris. This work provides new insights on synthesis and industry application of the a-C:H films with ultra-low friction properties.  相似文献   

2.
MoS2/a-C:H multilayer film and MoS2/a-C:H composite film exhibit excellent tribological properties in vacuum, which can be used as the potential space lubricant. The radiation-protective properties of these two films in atomic oxygen (AO) are evaluated. The influences of AO radiation on structure, morphology, and tribological properties of the films were investigated. The results show that AO radiation mainly causes oxidation and increases sp2 C content in both of the films. Furthermore, the MoS2 sublayer on the surface of the multilayer film is oxidized heavily, whereas both the MoS2 and the a-C:H matrix on the surface were oxidized in the composite film. As a result of this, the multilayer film exhibits high friction coefficient and short sliding lifetime in vacuum after AO radiation. Compared with that, the composite film exhibits lower friction and longer sliding time more than 3600 seconds in vacuum, which illustrates it has a good AO radiation protection. This indicates that MoS2/a-C:H composite film is more likely to be used as a potential space lubricant.  相似文献   

3.
Hydrogenated amorphous carbon (a-C:H) films with silicon and oxygen additions, which exhibit mechanical, tribological and wetting properties adequate for protective coating performance, have been synthesized at room temperature in a small- (0.1 m3) and a large-scale (1 m3) coaters by low-pressure Plasma-Activated Chemical Vapour Deposition (PACVD). Hence, a-C:H:Si and a-C:H:Si:O coatings were produced in atmospheres of tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO), respectively, excited either by radiofrequency (RF – small scale) or by pulsed-DC power (large scale). Argon was employed as a carrier gas to stabilize the glow discharge. Several series of 2–5 μm thick coatings have been prepared at different mass deposition rates, Rm, by varying total gas flow, F, and input power, W. Arrhenius-type plots of Rm/F vs. (W/F)?1 show linear behaviours for both plasma reactors, as expected for plasma polymerization processes at moderated energies. The calculation of apparent activation energy, Ea, in each series permitted us to define the regimes of energy-deficient and monomer-deficient PACVD processes as a function of the key parameter W/F. Moreover, surface properties of the modified a-C:H coatings, such as contact angle, abrasive wear rate and hardness, appear also correlated to this parameter. This work shows an efficient methodology to scale up PACVD processes from small, lab-scale plasma machines to industrial plants by the unique evaluation of macroscopic parameters of deposition.  相似文献   

4.
采用大功率高重复频率准分子激光溅射热解石墨靶制备了类金刚石碳膜, 研究了实验条件对类金刚石膜光学性能的影响, 发现氢可以提高膜中sp3键的含量和膜的光学透过率. 在实验参数范围内, 膜的光学性能随着氢压的增加而提高. 根据类金刚石膜的反应沉积机理对上述结果进行了分析、解释.  相似文献   

5.
The development of a mechanically stable, functionally graded Ti-doped a-C:H interface layer in combination with a functional a-C:H coating requires a reduction of the brittle phases which induce generally problems in the transitions from Ti to TiC/a-C:H. The core objective of this study was to develop an optimum interlayer between the substrate and the functional top layer for biomedical applications, namely for tooth implants. Since the interlayer may be exposed to the sliding process, in the case of local failure of the top layer it has to fulfil the same criteria: biocompatibility, high wear resistance and low friction.The functional Ti-C:H layers with thickness in the range 2.5–3.5 μm were deposited by a magnetron sputtering/PECVD hybrid process by sputtering a Ti-target in a C2H2 + Ar atmosphere in dc discharge regime. The sets of coating samples were prepared by varying the C and H concentrations controlled by the C2H2 flow during the deposition process. The tribological properties were evaluated on a pin-on-disc tribometer at room temperature (RT) and at 100 °C using 440C balls with a diameter of 6 mm. The tests at 100 °C were performed to investigate the effect of the sterilization temperature on the tribological properties and the coating lifetime as well. The tribological performance was examined with respect to the friction coefficient, the wear rates of the coating and the counter-parts and the analysis of the wear debris. The Ti/C ratio decreased almost linearly from 4.5 to 0.1 with increasing C2H2 flow; the hydrogen content showed a minimum of 5 at.% at C2H2 flow of 30 sccm, while for lower flows it was about 10 at.%. The coatings could be divided into three groups based on the C2H2 flow: (i) 10–15 sccm, exhibiting severe abrasive damage during the sliding tests, (ii) 20–45 sccm, showing the highest hardness and friction values, and (iii) 52–60 sccm, with moderate hardness and minimal values of the friction coefficient and the wear rate.  相似文献   

6.
Tribological behaviors of three typical kinds of diamond-like carbon (DLC) films (a-C, a-C:Cr, and a-C:H) in sulfuric acid and sodium hydroxide solutions were investigated. The a-C film showed the lowest stable coefficients of friction (COF) in both sulfuric acid and sodium hydroxide solutions but the worst wear resistance in sulfuric acid solution. The a-C:H film showed the highest COF in sulfuric acid solution and the best wear resistance in both sulfuric acid and sodium hydroxide solutions. The a-C:Cr film exhibited superior comprehensive tribological performance in sulfuric acid solution, while in sodium hydroxide solution, high COF and very poor wear resistance was observed. What is more, friction and wear mechanism was revealed by investigating the friction-induced material evolutions on the sliding surface.  相似文献   

7.
Hydrogenated amorphous carbon (a-C:H) films consisting of a top a-C:H layer, a gradient transient a-C:H:Ti layer, and a bottom Ti layer were irradiated by 1.1-MeV C+ ions, resulting in a maximum displacement damage of 1.0 dpa and a projected range inside the Ti layer. Time-of-flight secondary ion mass spectrometry, electron energy loss spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analyses were performed to investigate the compositional and structural transitions of a-C:H films after self-ion irradiation. The results revealed that C+ ions passing through the top a-C:H layer induced C–H fracture and hydrogen diffusion in this layer and then resulted in atomic intermixing in the multilayered adhesion interlayer. After local energy deposition of C+ ions, the initial sharp interfaces in the a-C:H:Ti layer became ambiguous due to interfacial mixing. In addition, titanium carbides formed in the Ti layer, with a gradual phase transition from TiCx to TiC with a diffusion depth of 200 nm. The broken compositional gradients of the adhesion interlayer resulted in a significant decrease in the adhesion strength of the films, which eventually resulted in degraded antiwear properties of the irradiated film in dry sliding tribotests.  相似文献   

8.
TiC/a‐C:H and a‐C:H nanocomposite coatings were prepared on AISI 440C steel substrates using magnetron sputtering process. A comparative study was made on their composition and microstructure by Raman spectroscopy and high‐resolution transmission electron microscopy (HRTEM). The tribological properties of two types of carbon‐based coatings were investigated by pin‐on‐disc tribometer under the sand‐dust conditions concerning the influence of applied load, amount of sand and sand particle sizes. The results show that these carbon‐based coatings exhibited high tribological performance with low friction coefficient and wear rate under the sand‐dust environments. However, the TiC/a‐C:H coatings exhibit relatively higher fluctuant friction coefficient as well as higher wear rate in comparison with the a‐C:H coatings under sand‐dust environments. The formation of nanocrystalline hard TiC phase distributed in amorphous carbon matrix decreased the residual stress but significantly increased the hardness and Young's modulus of TiC/a‐C:H coatings, and consequently caused a relatively higher abrasive and fatigue wear loss under the sand‐dust conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The pre-treatment of substrate surface had been a key part of DLC film preparation to improve mechanical and tribological properties. Ti plasma etching pre-treatment was investigated in this paper as a new effective surface pre-treatment method to substitute transition layer. This pre-treatment used high-energy Ti plasma to impact substrate surface. Ti plasma etched the substrate to a depth of 407 nm and increased the roughness from 1.36 to 40.39 nm. A trace layer of substrate, together with cobalt, oxides, and other impurities, was removed. Ti plasma broke some top WC crystals and combined with the free carbon ions separating from the substrate. A DLC film was deposited on the etched surface. Compared with DLC films deposited on the untreated substrate and Ti transition layer, the DLC film on the Ti plasma etched substrate had best adhesion strength of 34.14 N. The three DLC films had the same sp3 bonding carbon content, but Ti plasma etching treatment could promote the formation of sp3 bonds on the interface of substrate and DLC film. This DLC film had low friction coefficient of 0.12 and low wear rate of 5.11 × 10−7 mm3/m·N. In summary, Ti plasma etching pre-treatment could significantly improve the adhesion of DLC film and keep its excellent tribological properties.  相似文献   

10.
The effect of addition of nitrogen or ammonia in an amount equal to the flow of methane entering as a 7: 1 H2/CH4 mixture into a hollow-cathode dc glow flow discharge on the rate of deposition/erosion of amorphous hydrocarbon (a-C:H) films at 300 K has been studied. The introduction N2 or NH3 into the mixture facilitates the transition from deposition to erosion of a-C(N):H films in the hollow cathode, but has a little effect on the growth rate of a-C(N):H films in the positive column and in the afterglow of the discharge. It has been suggested that the changes in the a-C:H film deposition/erosion rate are due to the formation of hydrogen cyanide, mainly, on the hollow-cathode surface.  相似文献   

11.
Plasma‐enhanced chemical vapor deposition was employed to fabricate hydrogenated amorphous carbon (a‐C:H) films and fluorine‐doped hydrogenated amorphous (a‐C:H:F) carbon films. For comparison purpose, the a‐C:H films were treated with CF4 plasma. The bonding structure and tribological behavior of the films were investigated. The results indicate that the F presented mainly in the forms of C–F3, C–F and C–F2 groups in both the a‐C:H:F film and the surface CF4 plasma processed hydrogenated amorphous carbon (F‐P‐a‐C:H) films. Moreover, the a‐C:H:F films, because of the transformation of sp3 to sp2, possess a lower friction coefficient than that of the F‐P‐a‐C:H films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.  相似文献   

13.
Nanocomposite Me–C–N:H coatings (Me is TiNb, TiZr or TiAl), with relatively high non-metal/metal ratios, were prepared by cathodic arc method using TiNb, TiZr and TiAl alloy cathodes in a CH4 + N2 atmosphere. For comparison purposes, a-C–N:H films were also produced through evaporating a graphite cathode in a similar atmosphere. The films were characterized in terms of elemental and phase compositions, chemical bonds, texture, hardness, adhesion and friction behavior by GDOES, XPS, Raman spectroscopy and XRD techniques, surface profilometry, hardness and scratch adhesion measurements, and tribological tests. The nanocomposite films consisted of a mixture of crystalline metal carbonitride and amorphous carbon nitride. The non-metal/metal ratio in the films composition was found to range between 1.8 and 1.9. For the metal containing nanocomposites, grain size in the range 7–23 nm, depending on the metal nature, were determined. As compared with the a-C–N:H, the Me–C–N:H films exhibited a much higher hardness (up to about 39 GPa for Ti–Zr–C–N:H) and a better adhesion strength, while the coefficients of friction were somewhat higher (0.2–0.3 for Me–C–N:H and 0.1 for a-C–N:H).  相似文献   

14.
Acetylene chemistry is studied by means of threshold ionization mass spectrometry (TIMS) in remote Ar/C(2)H(2) expanding thermal plasma to identify the growth precursors of hydrogenated amorphous carbon (a-C:H) films. More than 20 hydrocarbon species are measured, enabling a comprehensive study of acetylene chemistry in the plasma environment. It is shown that the plasma composition is controlled by the initial ratio between the acetylene flow into the reactor and argon ion and electron fluence emanating from the remote plasma source. Complete decomposition of acetylene to C, CH, CH(2), C(2), and C(2)H radicals is achieved in subsequent charge transfer and dissociative recombination reactions under low acetylene flow conditions. The formation of soft polymer-like a-C:H films can be attributed to C, C(2), and also partially to CH and C(2)H deposition. At acetylene flows higher than argon ion and electron fluence, reactions of C, CH, C(2), and C(2)H radicals with acetylene lead to the formation of various hydrocarbon species, whose behavior is dependent on whether the number of carbon atoms is even or odd. The detected resonantly stabilized C(3), C(3)H, and probably also C(5) and C(5)H radicals are unreactive with acetylene in the gas phase and are, therefore, abundantly present close to the substrate. The C(3) radical has among them the highest density, and it is identified as the significant growth precursor of Ar/C(2)H(2) expanding thermal plasma deposited hard a-C:H films.  相似文献   

15.
The surface modification of the fullerene‐like hydrogenated carbon (FL‐C:H) film was achieved by bombardment using Ar, H, and N ions, respectively. A systematic comparison of X‐ray photoelectron spectroscopy (XPS) and Fourier transformation infrared(FTIR) spectra was made between the FL‐C:H film and ion‐bombarded films. The results show that ion bombardment resulted in the increase of sp3 C content, specially, new C? N bonds were formed for N‐ion‐bombarded film. The contact angle (CA) and friction coefficient of those films were measured. The surface free energy evaluated from the contact angle increased for ion‐bombarded films, and the most obvious increase was obtained for N‐ion‐bombarded film. The friction coefficient decreased for H‐ion‐bombarded film whereas it increased for N‐ion‐bombarded film, and the friction coefficient of Ar‐ion‐bombarded film was close to that of the FL‐C:H film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
During recent years, graphene as a solid lubrication material have been thoroughly studied under nano or micro scales, but rarely reported at industrial conditions. In present work, graphene films as solid lubricant were prepared on the surface of 201 stainless steel substrates by pencil sketch. And then the friction tests from 5 to 65 N were carried out via a homemade tribo-tester and used GCr15 balls (ø = 5 mm) as friction pairs. Not surprisingly, graphene films cannot bear the loads beyond 5 N, but interestingly, via gradually increasing the loads, graphene films show prominent load performance and steady state of friction coefficients at about 0.12 while the loads varied from 5 to 65 N. Compared with bare steel, the coefficient of graphene films reduced by about 80%, and the wear volume reduced to 1/28 when variable load (from 5 N to 30 N) were applied. Raman spectra shown that the structure of graphene had been changing into diamond-like carbon films with graphene distributed inside, which was confirmed by HRTEM that graphenes were coming with amorphous carbon. Considering the roughness of steel wafers (170 nm), one can speculate that, with graphene films' protection, the steel has no abrasion but plastic deformation instead. It is concluded that the shearing force induced the film densification via sp2 to sp3 changing that enforced cross-linking. This cross-linking carbon matrix was responsible for high load bearing and the graphene exfoliated into graphene under shearing force contribute to low steady-state friction. Benefiting from sketch, one can get a lubrication film on any substrates with complex topography, our results shed light on the growth of graphene films for industrial use.  相似文献   

17.
Titanium-doped diamond-like carbon (Ti-DLC) coatings with Ti concentration of 4 at.% (Ti4at.%-DLC) and 27 at.% (Ti27at.%-DLC) were prepared by a hybrid ion beam deposition system for comparison. The tribological behaviors of Ti-DLC coatings under dry friction and boundary lubrication conditions were systematically investigated. Results showed that, under dry friction, the Ti4at.%-DLC coating displayed lower friction coefficient (0.07) and wear rate due to the continuous transfer film formed in the sliding interface, while Ti27at.%-DLC coating was worn out at initial stage due to severe abrasive wear. And under boundary lubrication, both the Ti4at.%-DLC and Ti27at.%-DLC coatings showed excellent tribological properties attributing to the formation of oil film between sliding interface. In particular, Ti27at.%-DLC performed the lowest wear rate of 1.12 × 10−16 m3 N−1 m−1 in this friction case. In conclusion, compared with Ti27at.%-DLC coating, Ti4at.%-DLC coating exhibited better tribological performances both under dry friction and boundary lubrication. The present result provides guidance for the selection of DLC coatings according to the realistic environment of starved-oil and rich-oil conditions.  相似文献   

18.
In this paper, the influence of the addition of W and H to pure DLC coatings on the structural, mechanical and tribological properties will be presented. The coatings were deposited by r.f. magnetron sputtering from a C target embedded with different numbers of W pellets. Working in non-reactive or reactive atmosphere allowed to deposit H-free or H-containing coatings, respectively, on steel and Si substrates. A Cr adhesion interlayer was interposed between the films and the substrate. Films with W content from 0 to 12 at.% and H incorporated up to a maximum value close to 40 at.% were deposited. All coatings had an amorphous structure, although vestiges of crystallinity could be detected in W-containing films. The addition of W led to a significant hardening of the DLC coating (from ~10 to 18 GPa); inversely, with H incorporation the hardness drop down to values even lower than that of pure DLC films. It was possible to establish a good correlation between the hardness and the residual stresses. In spite of decreasing friction and wear coefficients when alloying DLC with W, almost no difference was found among the W–DLC films whatever the W content was. A similar trend was achieved with the H addition. However, in this case a decrease in the friction coefficient was registered whereas the wear rate increased. The best performance concerning the friction was obtained for an H-containing coating (0.05) whereas, for the wear resistance, H-free W–DLC films were better performing (0.3 × 10?16 m3 N?1 m?1).  相似文献   

19.
Summary The measurement of hydrogen profiles in diamond-like carbon films (a-CH) by elastic recoil detection (ERD) and the decrease of the H content after irradiation with Ni ions are described.
Wasserstoffprofilanalyse in a-C:H-Filmen durch elastische Rückstoß-Detektion (ERD)

Guest scientist from IMR of Academia Sinica, Shenyang, People's Republic of China  相似文献   

20.
Hydrogenated amorphous carbon layers (a-C:H) deposited at near room temperature by CH4 and C2H2-Ar rf discharges have been studied. Discharge processes were investigated using growth kinetics and optical emission spectroscopy (OES). The role of plasma chemistry and of ion bombardment is discussed. Addition of argon, necessary to stabilize the C2H2 discharge, is found to enhance susbstantially gas phase processes such as dissociation, formation of atomic hydrogen and of CH, C2, C3 species (revealed by OES). It appears that rf plasma is very efficient for dissociation and ionization processes with threshold energies in the ten eV range. The layers' properties have been characterized by means of UV-Visible absorption, Fourier transform IR and Raman spectroscopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号