首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The approach of inelastic background analysis was previously demonstrated to be a useful tool for retrieving the depth distribution of buried layers with an accuracy, which is better than 5% even for some complex samples. This paper presents a study that attempt at rationalizing the approach by exploring how to make the best choice of the inelastic mean free path and the inelastic scattering cross section, which are the two main input parameters needed in the analysis. To this end, spectra from buried layers were created with Quases-Generate software. The layers consisted of Si 1s recorded at 6099 eV and Au 4d recorded at 1150 eV kinetic energy buried under overlayers of Si, Au, Al, polymer, or Ta. Spectra from samples with a wide range of buried layer thickness and overlayer thickness were created. Subsequently, these spectra were analyzed with Quases-Analyze software and for each case the analysis was done with different combinations of the input parameters. Among these, the best choice for all cases was to use an effective IMFP and effective inelastic scattering cross section with relative weights being half the thickness of the buried layer and the full thickness of the overlayer. This general formula together with a new version of the software makes the inelastic background analysis of buried layers faster and easier to apply even for nonspecialists.  相似文献   

2.
We have developed a software tool for the generation of survey spectra in X‐ray photoelectron spectroscopy (GOSSIP) to simulate wide spectra in the range 200–1500 eV from nano‐structured surfaces. It is based on linear combination of delta layers spectra with the atomic spectra of the elements or compounds of the surface to be simulated. The set of delta layers to reproduce any model is a 200‐file database of thin layers regularly buried up to a depth of 40 nm and has been generated with QUASES. The atomic spectra that constitute a second database have themselves been determined with QUASES from experimental spectra of the elements or compounds in pure form. The principle of GOSSIP is described. Then the generation process is validated by comparison with experimental data for simple rectangular in‐depth distribution of elements. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The high importance of X-ray photoelectron spectroscopy (XPS) in surface analysis is well established. In XPS, the shape of the measured peaks is affected by two classes of energy loss: extrinsic losses because of the transport of photoelectrons in the matter and intrinsic losses because of the sudden creation of the static core hole. In order to perform a quantitative, comprehensive determination of the zero-energy loss spectrum, a systematic and physically meaningful background subtraction method must be used. In this paper, we propose a universal analytical expression to model the energy loss cross section of the emitted photoelectrons for transition metals and their oxides. The proposed expression is a generalization of the well-known Tougaard's universal inelastic scattering cross section to also account for the intrinsic losses. We demonstrate the use of this to determine the primary excitation spectra of several transition metals and their oxides, and we compare the results with a more accurate calculation based on the dielectric response model for XPS.  相似文献   

5.
This paper reports on our study of the formation of an interface of layered structures in the Fe-Si system by reflected electron energy loss spectroscopy (REELS). Quantitative element analysis was performed using the product of the mean length of the inelastic free path by the inelastic scattering cross-section of electrons. It is shown that the Fe-Si interface is quite uniform.  相似文献   

6.
7.
Recent progress in the following topics will be outlined. Needs and opportunities for further work will also be indicated. The topics are as follows. Compton scattering by inner shell (K and L) electrons; non-resonant Raman and Compton scattering and spin-dependent Compton scattering; atomic single-differential scattering cross-sections and incoherent scattering function (ISF) approximation; resonant Raman–Compton scattering and resonant inelastic X-ray scattering (RIXS) with possible coherence effects; ultra-high-resolution studies.  相似文献   

8.
Most real core-shell nanoparticle (CSNP) samples deviate from an ideal core-shell structure potentially having significant impact on the particle properties. An ideal structure displays a spherical core fully encapsulated by a shell of homogeneous thickness, and all particles in the sample exhibit the same shell thickness. Therefore, analytical techniques are required that can identify and characterize such deviations. This study demonstrates that by analysis of the inelastic background in X-ray photoelectron spectroscopy (XPS) survey spectra, the following types of deviations can be identified and quantified: the nonuniformity of the shell thickness within a nanoparticle sample and the incomplete encapsulation of the cores by the shell material. Furthermore, CSNP shell thicknesses and relative coverages can be obtained. These results allow for a quick and straightforward comparison between several batches of a specific CSNP, different coating approaches, and so forth. The presented XPS methodology requires a submonolayer distribution of CSNPs on a substrate. Poly(tetrafluoroethylene)-poly(methyl methacrylate) and poly(tetrafluoroethylene)-polystyrene polymer CSNPs serve as model systems to demonstrate the applicability of the approach.  相似文献   

9.
In elastic peak electron spectroscopy (EPES), the nearest vicinity of elastic peak in the low kinetic energy region reflects electron inelastic and quasielastic processes. Incident electrons produce surface excitations, inducing surface plasmons, with the corresponding loss peaks separated by 1–20 eV energy from the elastic peak. In this work, X‐ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for determining surface atomic composition and bulk density, whereas atomic force microscopy (AFM) is applied for determining surface morphology and roughness. The component due to electron recoil on hydrogen atoms can be observed in EPES spectra for selected primary electron energies. Simulations of EPES predict a larger contribution of the hydrogen component than observed experimentally, where hydrogen deficiency is observed. Elastic peak intensity is influenced more strongly by surface morphology (roughness and porosity) than by surface excitations and quasielastic scattering of electrons by hydrogen atoms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Ultraviolet photoelectron spectra (UPS) of C(82) isomers have been calculated using hybrid density functional theory in combination with the Gelius model [Proceedings of the International Conference on Electron spectroscopy, edited by D. A. Shirley (North-Holland, Amsterdam, 1972), p. 311; J. Electron Spectrosc. Relat. Phenom. 5, 985 (1974)]. The calculated UPS spectra are found to be isomer dependent and in good agreement with the experimental counterparts. Near-edge x-ray absorption fine structure (NEXAFS), x-ray photoelectron spectroscopy (XPS), x-ray emission spectroscopy, and the resonant inelastic x-ray scattering (RIXS) spectra of three important isomers [3(C(2)), 6(C(s)), and 9(C(2v))] have also been simulated. Strong isomer dependence has also been found for NEXAFS, XPS, and RIXS spectra.  相似文献   

11.
Recent developments in quantitative surface analysis by Auger (AES) and x-ray photoelectron (XPS) spectroscopies are reviewed and problems relating to a more accurate quantitative interpretation of AES/XPS experimental data are discussed. Special attention is paid to consideration of elementary physical processes involved and influence of multiple scattering effects on signal line intensities. In particular, the major features of core-shell ionization by electron impact, Auger transitions and photoionization are considered qualitatively and rigorous approaches used to calculate the respective transition probabilities are analysed. It is shown that, in amorphous and polycrystalline targets, incoherent scattering of primary and signal Auger and photoelectrons can be described by solving analytically a kinetic equation with appropriate boundary conditions. The analytical results for the angular and energy distribution, the mean escape depth, and the escape probability as a function of depth of origin of signal electrons as well as that for the backscattering factor in AES are in good agreement with the corresponding Mote Carlo simulation data. Methods for inelastic background subtraction, surface composition determination and depth-profile reconstructions by angle-resolved AES/XPS are discussed. Examples of novel techniques based on x-ray induced photoemission are considered.  相似文献   

12.
The measured peak shape and intensity of the photoemitted signal in X-ray photoelectron spectroscopy (XPS) experiments (elastic and inelastic parts included) are strongly correlated, through electron-transport theory, with the depth distribution of photoelectron emitters within the analyzed surface. This is the basis of so-called XPS peak-shape analysis (also known as the Tougaard method) for non-destructive determination of compositional in-depth (up to 6–8 nm) profiles. This review describes the theoretical basis and reliability of this procedure for quantifying amounts and distributions of material within a surface. The possibilities of this kind of analysis are illustrated with several case examples related to the study of the initial steps of thin-film growth and the modifications induced in polymer surfaces after plasma treatments.
Figure
Photoemitted spectra and in-depth concentration profiles (blue: oxygen; orange: carbon), obtained by means of XPS peak shape analysis, of a PET plasma activated surface. The shown topography corresponds to an atomic force microscopy image of the treated surface.  相似文献   

13.
The improvement of the software UNIFIT 2020 from an analysis processing software for photoelectron spectroscopy (XPS) only to a powerful tool for XPS, Auger electron spectroscopy (AES), X-ray absorption spectroscopy (XAS), and Raman spectroscopy requires new additional programme routines. Particularly, the implementation of the analysis of Raman spectra needs a well-working automatic spike correction. The application of the modified discrete Laplace operator method allows for a perfect localization and correction of the spikes and finally a successful peak fit of the spectra. The theoretical basis is described. Test spectra allow for the evaluation of the presented method. A comparison of the original and spike-corrected real measurements demonstrates the high quality of the method used.  相似文献   

14.
The electronic energy structure (EES) of the valence band in tetragonal TiCu and Ti2Cu was studied experimentally and theoretically. The experimental study of valence band EES was carried out by X-ray photoelectron spectroscopy (XPS). The calculations were performed in terms of the cluster version of multiple scattering theory in a self-consistent field approximation. The results are compared with X-ray emission spectroscopy data available in the literature. The density of state curves agree well with spectroscopic data. The major contribution to XPS is from the copper d-states. The specifics of chemical bonding in the compounds leading to the observed changes in the shape of the valence band X-ray photoelectron spectra are discussed.  相似文献   

15.
In this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions. Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility. A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.  相似文献   

16.
The greater information depth provided in hard X-ray photoelectron spectroscopy (HAXPES) enables nondestructive analyses of the chemistry and electronic structure of buried interfaces. Moreover, for industrially relevant elements like Al, Si, and Ti, the combined access to the Al 1s, Si 1s, or Ti 1s photoelectron line and its associated Al KLL, Si KLL, or Ti KLL Auger transition, as required for local chemical state analysis on the basis of the Auger parameter, is only possible with hard X-rays. Until now, such photoemission studies were only possible at synchrotron facilities. Recently, however, the first commercial XPS/HAXPES systems, equipped with both soft and hard X-ray sources, have entered the market, providing unique opportunities for monitoring the local chemical state of all constituent ions in functional oxides at different probing depths, in a routine laboratory environment. Bulk-sensitive shallow core levels can be excited using either the hard or soft X-ray source, whereas more surface-sensitive deep core-level photoelectron lines and associated Auger transitions can be measured using the hard X-ray source. As demonstrated for thin Al2O3, SiO2, and TiO2 films, the local chemical state of the constituting ions in the oxide may even be probed at near-constant probing depth by careful selection of sets of photoelectron and Auger lines, as excited with the combined soft and hard X-ray sources. We highlight the potential of lab-based HAXPES for the research on functional oxides and also discuss relevant technical details regarding the calibration of the kinetic binding energy scale.  相似文献   

17.
A comparison between X-ray fluorescence analysis (XRFA) and X-ray photoelectron spectroscopy (XPS) indicates the applicability of these two methods as relative and absolute techniques. For XPS the absolute field of application should be preferred. An improvement of the Hirokawa-Ebel method (an absolute XPS analysis) is presented in this paper. It is shown that the knowledge of the inelastic mean free paths of the photoelectrons (IMFP) is no longer required, but the energy dependence of the IMFPs can be used as a basis. This guarantees simplicity and much more universal applicability.  相似文献   

18.
A method for the rapid determination of theoretical relative sensitivity factors (RSFs) for hard X-ray photoelectron spectroscopy (HAXPES) instruments of any type and photon energy has been developed. We develop empirical functions to describe discrete theoretically calculated values for photoemission cross sections and asymmetry parameters across the photon energy range from 1.5 to 10 keV for all elements from lithium to californium. The formulae describing these parameters, in conjunction with similar practical estimates for inelastic mean free paths, allow the calculation of a full set of theoretical sensitivity factors for a given X-ray photon energy, X-ray polarisation and instrument geometry. We show that the anticipated errors on these RSFs are less than the typical errors generated by extracting X-ray photoelectron spectroscopy (XPS) intensities from the spectra and thus enable adequate quantification for any XPS/HAXPES experiment up to 10 keV. A spreadsheet implementation of this method is provided in the supporting information, along with example RSFs for existing commercial instruments.  相似文献   

19.
Surface contaminations on silicon slices and contaminations in surface layers deposited on thick silicon substrates were investigated by means of ion induced X-ray analysis. Sensitivity limits of foreign atoms are given for proton and nitrogen impact in dependence of projectile energies. They were derived using calculated K-shell ionization cross-sections as well as measured X-ray and γ-ray background spectra. The validity of the model used for characteristic cross-section calculations was proved by comparing the theoretical with experimental results. Some examples are given for the analysis of the basic material for the production of semiconductor electronic devices.  相似文献   

20.
显微共焦拉曼光谱研究电化学合成聚苯胺膜   总被引:3,自引:0,他引:3  
显微共焦拉曼技术被用来研究电化学合成的聚苯胺(PANI)膜. 研究结果表明:在不同的激发光聚焦深度,聚苯胺膜的拉曼光谱有明显变化.从而反映出聚苯胺膜的掺杂程度在膜生长过程中随膜厚度的增长而增加. 并由X射线电子能谱(XPS)和紫外吸收光谱(UV)分析证实.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号