首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
利用能量色散型XRF重金属实验平台,在实验室自然大气环境下获取土壤的X射线荧光,通过X射线荧光光谱法定量分析了国家标准土壤样品中元素Ni的含量。实验研究了土壤中Ni元素的X荧光特征分析谱线,采用加入内标法测定了Ni元素定标曲线,并依据实验结果分析了内标元素选取方法。实验结果表明,对土壤样品进行内标法分析时,可选取基体中适宜元素作为内标元素;使用Pb的Lα线,Cu和Fe的Kα线作内标线时相对标准偏差(RSD)分别为6.24%,5.24%和5.22%,说明选择合适基体主量元素的特征谱线作为内标线,可有效提高测量结果的准确性。  相似文献   

2.
王鑫  康明铭  刘军  陈秀莲  覃雪 《物理学报》2018,67(1):13301-013301
使用X荧光分析法对地表灰尘和空调滤网灰中所含金属元素(Mn,Fe,Cu,Zn,Pb)做了定量分析.结果表明,5种元素在空调灰中的含量都大于其在地表灰尘中的含量,其中Cu,Zn,Pb 3种元素在地表灰尘和空调灰中的含量远远大于四川省表层土壤中对应的平均含量.通过对不同粒径组地表灰尘中重金属含量的分析表明,地表灰尘中五种元素的含量在测量范围内随灰尘直径的变化规律大致相同.  相似文献   

3.
Modern infrared (IR) spectroscopy and imaging has a wide range of applications in health and plant sciences. Initially, it was extensively used for the study of proteins, nucleotides, lipids and carbohydrates. With time, its use has extended to disease assessment to discriminate healthy and diseased samples on the basis of chemical changes. The application of an advanced focal plane array detector, which is able to scan a large area of samples in a short time, helps in investigating specific changes that could be correlated with different environmental stresses. An IR microscope connected with a synchrotron light source further enhances the lateral spatial resolution at diffraction limit because of the compact beam size. For example, synchrotron-based IR spectroscopy imaging in combination with multivariate statistical analysis has been proven to be a powerful non-destructive analytical tool to probe changes in plant cell wall composition/structure in response to biological processes and environmental stresses. New development of nano-Fourier transform infrared spectroscopy (FTIR) combined with scattering type scanning near-field optical microscopy breaks the diffraction limitation, which opens the new area of applications. This review focuses on a new area of diagnostic research as well as development of IR spectroscopy and imaging for biological specimens including compositional changes in plant cell wall.  相似文献   

4.
Bearing the merits of rapid, minimally destructive, and simultaneous multi-element analyses, laser-induced breakdown spectroscopy (LIBS) shows its unique advantages in quantitative analyses of lead, cadmium, and hexavalent chromium in plant materials. However, the greatest challenge LIBS must confront is calibration. Various methods for calibration are proposed and put into effect; nevertheless, limits of detection acquired by LIBS are not acceptable when they are compared with the maximum residue limits drawn up by governments, and LIBS's performances in quantitative analyses are to be improved. This review summarizes recent studies of analyzing lead, cadmium, and hexavalent chromium in plant materials quantitatively by LIBS; weighs the strengths and weaknesses of their calibration methods; and recommends the combination of matrix-matched standards based on spiked sample materials and internal standard as well as chemometrics in complicated situations for calibration in LIBS. Selecting the emission line of the analyte, sample enrichment and signal enhancement are measures that this review puts forward to improve the performances of LIBS in calibration. These quantitative analyses of lead, cadmium, and hexavalent chromium in plant materials by LIBS provide an opportunity to be utilized in mapping distributions and remediation for soil and water, as well as supervision for agricultural products safety and pollution treatments.  相似文献   

5.
The concentration of five different elements in six lichens species of different regions in Giresun and Ordu (Turkey) was determined using the energy dispersive X-ray fluorescence method. A radioisotope excited X-ray fluorescence analysis using the method of multiple standard addition is applied to the elemental analysis of lichens. An annular 50 mCi 241Am radioactive source and an annular 50 mCi 55Fe radioactive source were used for excitation of characteristic K X-rays. An Si(Li)detector which has a 147 eV full-width at half-maximum for 5.9 keV photons was used for intensity measurements. A qualitative analysis of spectral peaks showed that the samples contained potassium, calcium, titanium, iron, and barium.  相似文献   

6.
Polarization energy dispersive X‐ray fluorescence spectrometry was used in the determination of Pb, As and Cd, as well as Cr, Cu, Zn, Ni and other minor and trace elements in the soil samples taken from a polluted area by lead mine exploitation. Two difficulties have to be overcome. One is strong overlap of Pb Lα over As Kα and another is lack of suitable certified reference materials. The different excitation conditions and analytical lines were tried to reduce the impact of overlap of Pb Lα over As Kα. When KBr was used as the second target, compared with Zr, the proportion from Pb Lα was reduced about six times. Even so, however, the overlap was not reduced enough to be ignored. The inductively coupled plasma atomic emission spectrometry and mass spectrometry methods were used to analyze parts of soil samples and provide data for compensating lack of reference materials. By this method, the analytical concentration range of Pb, As and Cd were significantly extended. The analytical range of Pb, As and Cd were 1.4 µg/g~4.2%, 0.6 µg/g~9.3% and 0.5 µg/g~1500 µg/g, respectively. The high concentrations of Pb, As and Cd were found in the samples in the vicinity of the Pb‐Zn mine. The concentrations of Pb, As, Cd, Zn and Cu were higher than the Class III in the Chinese environmental quality standard for soils. The highest concentrations of Pb, As, Cd and Zn in the soil samples were 14 960, 2726, 65 and 9439 µg/g, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A contracted basis set of triple zeta (TZ) valence quality for the atoms from K to Kr was constructed from fully-optimized Gaussian basis sets generated in this work. Gaussian polarization functions (d, f, and g symmetries), which were optimized at the second-order Mφller–Plesset level, were added to the TZ set. This extends earlier work on segmented contracted TZ basis set for atoms H-Ar. This set along with the BP86 non-hybrid and B3LYP hybrid functionals were used to calculate geometric parameters, dissociation energy, harmonic vibrational frequency, and electric dipole moment of a sample of molecules and, then, comparison with results obtained with other basis sets and with experimental data reported in the literature is done. CCSD(T) atomic excitation energies and bond lengths, dissociation energies, and harmonic vibrational frequencies of some diatomics were also evaluated. Using density functional theory and gauge-including atomic orbitals, 57Fe and 77Se nuclear magnetic resonance chemical shifts in Fe(C5H5)2, H2Se, (CH3)SeH, CSe2, SeCO, H2CSe, and SeF6 were calculated. Comparison with theoretical and experimental values previously published in the literature was done. It is verified that in general these results give good agreement with experimental and benchmark values.  相似文献   

8.
Several experiments in the context of ladder materials have recently shown that the study of simple models of anisotropic ladders (i.e. with different couplings along legs and rungs) is important for the understanding of these compounds. In this paper Exact Diagonalization studies of the one-band Hubbard and t-J models are reported for a variety of densities, couplings, and anisotropy ratios. The emphasis is given to the one-particle spectral function which presents a flat quasiparticle dispersion at the chemical potential in some region of parameter space. This is correlated with the existence of strong pairing fluctuations, which themselves are correlated with an enhancement of the bulk-extrapolated value for the two-hole binding energy as well as with the strength of the spin-gap in the hole-doped system. Part of the results for the spectral function are explained using a simple analytical picture valid when the hopping along the legs is small. In particular, this picture predicts an insulating state at quarter filling in agreement with the metal-insulator transition observed at this special filling for increasing rung couplings. The results are compared against previous literature, and in addition pair-pair correlations using extended operators are also here reported. Received: 22 April 1998 / Revised: 23 July 1998 / Accepted: 30 July 1998  相似文献   

9.
The present review emphasizes the role of hydrodynamic cavitation (HC) and acoustic cavitation in clean and green technologies for selected fuels (of hydrocarbon origins such as gasoline, naphtha, diesel, heavy oil, and crude oil) processing applications including biodiesel production. Herein, the role of cavitation reactors, their geometrical parameters, physicochemical properties of liquid media, liquid oxidants, catalyst loading, reactive oxygen species, and different types of emulsification and formation of radicals, formation as well as extraction of formed by-products are systematically reviewed. Among all types of HC reactors, vortex diode and single hole orifices revealed more than 95 % desulfurization yield and a 20 % viscosity reduction in heavy oil upgrading, while multi-hole orifice (100 holes) and slit Venturi allowed obtaining the best biodiesel production processes in terms of high (%) yield, low cost of treatment, and short processing time (5 min; 99 % biodiesel; 4.80 USD/m3). On the other hand, the acoustic cavitation devices are likely to be the most effective in biodiesel production based on ultrasonic bath (90 min; 95 %; 6.7 $/m3) and desulfurization treatment based on ultrasonic transducers (15 min; 98.3 % desulfurization; 10.8 $/m3). The implementation of HC-based processes reveals to be the most cost-effective method over acoustic cavitation-based devices. Finally, by reviewing the ongoing applications and development works, the limitations and challenges for further research are addressed emphasizing the cleaner production and guidelines for future scientists to assure obtaining comprehensive data useful for the research community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号