首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Galina V. Nizova 《Tetrahedron》2007,63(33):7997-8001
Certain amino acids used in small amounts (10 catalyst equiv) strongly accelerate the H2O2 oxidation of cyclohexane catalyzed by a dinuclear manganese(IV) complex with 1,4,7-trimethyl-1,4,7-triazacyclononane. The efficiency of the co-catalyst dramatically depends on the nature and structure of the acid. Pyrazine-2,3-dicarboxylic acid (2,3-PDCA) has been found to be the most efficient co-catalyst whereas picolinic acid is almost inactive in this oxidation. The highest rate has been attained when 2,3-PDCA was used in combination with trifluoroacetic acid.  相似文献   

2.
Oxidation of alkanes with hydrogen peroxide in water solution at 10-50 °C is efficiently catalyzed by the cationic dinuclear manganese (IV) derivative [Mn2L2O3]2+ (1, with L = 1,4,7-trimethyl-1,4,7-triazacyclononane, TMTACN) in the form of the hexafluorophosphate salt ([1][PF6]2) if oxalic acid is present as a co-catalyst. Methane gives methanol and formaldehyde (turnover numbers, TONs, were 7 and 2, respectively, after reduction of the reaction mixture with ascorbic acid) whereas cyclohexane was oxidized with TONs up to 160 affording cyclohexyl hydroperoxide, cyclohexanone and cyclohexanol (the ketone was the main product, although at room temperature almost pure alkyl hydroperoxide was formed). In contrast to the oxidation in acetonitrile, the reaction with linear n-alkanes in water exhibits an unusual distribution of oxygenates. For example, in the oxidation of n-heptane the normalized reactivity of the methylene group in position 4 of the chain is 3-7 times higher than that of the CH2 group in position 2. Dec-1-ene is epoxidized by hydrogen peroxide in water (a biphasic system) catalyzed by [1][PF6]2 and oxalic acid in the presence of a small amount of acetonitrile with TONs up to 1000 (no epoxidation has been detected in the absence of MeCN).  相似文献   

3.
Oxone (peroxysulphate) very efficiently oxidizes benzene to p-quinone (TON 1140) and alkanes to the corresponding alcohols and ketones (aldehydes) in aqueous acetonitrile 50 °C if catalytic amounts of complex [Mn2L2O3]2+ (L=1,4,7-trimethyl-1,4,7-triazacyclononane) and oxalic acid are present in the solution. In contrast to the similar reaction with H2O2, the alkane oxidation with Oxone does not afford the corresponding alkyl hydroperoxides. Phenol was quantitatively oxidized to a mixture of p-quinone and pyrocatechol (9:1 ratio). Cyclohexanol gave cyclohexanone (TON 400). The proposed mechanism includes the formation of an oxidizing species containing the Mn(V)O fragment. A kinetic study demonstrated that an adduct of [Mn2L2O3]2+ and oxalic acid is formed in the initial stage. This adduct reacts with Oxone to generate the oxidizing species.  相似文献   

4.
Summary The dinuclear manganese(IV) complex [LMn(O)3MnL](PF6)2 (1, L = 1,4,7-trimethyl-1,4,7-triazacyclononane) catalyzes the extremely efficient oxidation of alcohols with hydrogen peroxide at room temperature. Oxalic acid is an obligatory co-catalyst. The oxidation of isopropanol, for example, yields acetone with turnover numbers up to 40000 after 5-10 h in the absence of a solvent. 2-Cyanoethanol was oxidized by this system with somewhat lower efficiency (conversion 70%). The catalytically active cation from salt 1 was obtained in an insoluble form containing a heteropoly anion [Mn2O3(TMTACN)2]2[SiW12O40]. Oxidation of 2-cyanoethanol using this heterogenized catalyst and oxalic acid gave the oxo-products with the 54% total yield.  相似文献   

5.
The effects of free-radical reaction inhibitors (InH), hydroquinone (HQ) and quinone (Q), on the oxidation of cyclohexane catalyzed by cobalt(II) acetate Co(OAc)2 · 4H2O and on the decomposition of hydrogen peroxide in acetic acid (HOAc) at 303 K were studied. It was found that an increase in the concentration of HQ in the starting reaction mixture containing cyclohexane, the catalyst, and H2O2 dissolved in HOAc resulted in an exponential decrease in the yields of the target products of oxidation: cyclohexanol, cyclohexanone, and cyclohexyl hydroperoxide. In the presence of Q, the dependence of the yield of the target products on the initial inhibitor concentration exhibited a maximum at (1.8–2.5) × 10–2 M Q. At (2.2–2.4) × 10–2 M Q concentrations, the yield of the target products was 55–60% of that in an uninhibited process. Based on kinetic, spectrometric, and quantum-chemical data, the effect found was explained by the fact that under the experimental conditions highly active hydroxyl derivatives of radicals rather than a hydroxy quinolide hydroperoxide (the homolysis of which can produce species with a free valence, which are capable of initiating free-radical reactions) were largely formed from Q.  相似文献   

6.
A simple system is described, which oxidizes saturated hydrocarbons either in acetonitrile or (less efficiently) in water. The system consists of 50% aqueous hydrogen peroxide as an oxidant, sodium metavanadate, NaVO3, as a catalyst and sulfuric (or oxalic) acid as a co-catalyst. The reactions were carried out at 20-50 °C. In the oxidation of cyclohexane in acetonitrile, the highest yield (37% based on cyclohexane) and turnover number (TON=1700) were attained after 3 h at 50 °C. The corresponding parameters were 16% and 1090 for n-heptane oxidation under the same conditions. The oxidation of higher alkanes, RH, in acetonitrile gives almost exclusively the corresponding alkyl hydroperoxides, ROOH. Light alkanes (n-butane, propane, ethane, and methane) have been also oxygenated by the system under consideration. The highest TON (200) was attained for ethane and the highest yield (19%) was obtained in the case of n-butane. The selectivity parameters measured for the oxidation of linear and branched alkanes are low, the reaction with cis- and trans-1,2-dimethylcyclohexanes is not stereoselective. These facts lead us to conclude that the oxidation occurs with the formation of hydroxyl radicals in the crucial step.  相似文献   

7.
Summary Epoxidation of natural terpene (+)-carvone by the system consisting of a catalyst, oxalic acid (co-catalyst) and H2O2 (70% aqueous solution; oxidant) was studied and factorial design methods were applied for the optimization of this reaction. A dinuclear manganese(IV) complex [LMn(O)3MnL](PF6)2 (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) was used as a catalyst, and acetonitrile was employed as a solvent. An analysis by methods of the complete 24 factorial design showed that an increase in the catalyst concentration gives a strong positive effect on the carvone conversion and selectivity. Hydrogen peroxide has a smaller positive effect on the conversion, but at high concentration, H2O2 leads to some decrease in the selectivity. An increase in the oxalic acid concentration has a beneficial effect on the conversion, but does not affect the selectivity.  相似文献   

8.
The homogeneous catalytic oxidation of cyclohexane by molecular oxygen and hydrogen peroxide in a solution of acetic acid (HOAc) in the presence of cobalt(II) acetate Co(OAc)2 is studied. The high yields of cyclohexanol, cyclohexanone, and cyclohexyl hydroperoxide (0.10–0.15 mol/l) and the high rate of the process (w = 10–5–10–4 mol l–1 s–1) are explained by (1) mild conditions of oxidation in the medium of the HOAc solvent and (2) efficient initiation of the process due to the fast kinetics-controlled dissociation of H2O2 into radicals in the studied reaction medium under the action of cobalt cations. Quantitative relationships are found for the cyclohexane oxidation rate, the yield of target products, and the ratio of reactants participating in the process. The effect of hydrogen hydroperoxide additives on the concentrations of reduced and oxidized forms of the catalyst is studied by spectrophotometry in model mixtures. Quantum chemistry is employed to calculate the probabilities of some key elementary reactions. Calculated data agree well with the experiment.  相似文献   

9.
A new composite electrode material with iron-manganic oxide coating (Fe-Mn/Mn2O3) was prepared, and its catalytic performance for oxidizing cyclohexanol was investigated in this work. The new electrode material, based on iron substrate covered with electrolytic manganese, was obtained by further coating the manganese surface with 50 % manganese nitrate solution and then conducting program thermal decomposition treatment. X-ray diffraction (XRD) was used to determine the surface crystal phase compositions, which were Mn and Mn2O3. The catalytic results showed an excellent electrocatalytic performance on the oxidation of cyclohexanol, and the main products were cyclohexanone and hexanedioic acid. According to our experiment results and the literature reports, the existence of mixed valent MnIII and MnIV played a key role in the electrocatalytic oxidation process. A probable process was proposed: the MnIV seized the hydrogen from cyclohexanol, the resulting cyclohexaneoxy radical was oxidized into cyclohexanone, and then the absorbed cyclohexanone was further oxidized into hexanedioic acid.  相似文献   

10.
A polymer membrane having polyoxyethylene grafting nylon 6 was prepared by reacting of nylon 6 and ethylene oxide. The chemical compositions of the polyoxyethylene grafting nylon 6 were determined by 1H NMR. Degree of substitution for amide group, x, and degree of polymerization for polyoxyethylene, n, in bulk polymerization at 80°C for 4–9.5 h were evaluated: x = 0.32 ± 0.01–0.56 ± 0.02 and n = 2.8 ± 0.1–6.0 ± 0.3. The polyoxyethylene grafting nylon 6 membrane showed a selective separation of cyclohexanol from a cyclohexane/cyclohexanone/cyclohexanol mixture by a pervaporation technique. The FTIR and flux analyses verified that the selectivity for cyclohexanol was attributed to the hydrogen-bonding interaction between hydroxyl group in cyclohexanol and the hydroxyl group in polyoxyethylene grafting chain. The pervaporation and an adsorption experiment of cyclohexanol through the present membrane showed that hydroxyl group in graft chain acted as a carrier for cyclohexanol.  相似文献   

11.
Two pure strontium borates SrB2O4·4H2O and SrB2O4 have been synthesized and characterized by means of chemical analysis and XRD, FT-IR, DTA-TG techniques. The molar enthalpies of solution of SrB2O4·4H2O and SrB2O4 in 1 mol dm−3 HCl(aq) were measured to be −(9.92 ± 0.20) kJ mol−1 and −(81.27 ± 0.30) kJ mol−1, respectively. The molar enthalpy of solution of Sr(OH)2·8H2O in (HCl + H3BO3)(aq) were determined to be −(51.69 ± 0.15) kJ mol−1. With the use of the enthalpy of solution of H3BO3 in 1 mol dm−3 HCl(aq), and the standard molar enthalpies of formation for Sr(OH)2·8H2O(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(3253.1 ± 1.7) kJ mol−1 for SrB2O4·4H2O, and of −(2038.4 ± 1.7) kJ mol−1 for SrB2O4 were obtained.  相似文献   

12.
It is found that charge-transfer on NO2 with Cl2 is fast at thermal energy. The Cl2 ion reacts with NO2 to produce Cl and NO2Cl, and SH charge-transfers rapidly with both Cl2 and NO2. From the exothermicities implied it is deduced that EA (SH)<EA (NO2)< EA (Cl2) or EA (NO2) = 2.38 ± 0.06 eV and EA (Cl2 = 2.46 ± 0.14 eV.  相似文献   

13.
The enthalpies of solution of NaRb[B4O5(OH)4]·4H2O in approximately 1 mol dm−3 aqueous hydrochloric acid and of RbCl in aqueous (hydrochloric acid + boric acid + sodium chloride) were determined. From these results and the enthalpy of solution of H3BO3 in approximately 1 mol dm−3 HCl(aq) and of sodium chloride in aqueous (hydrochloric acid + boric acid), the standard molar enthalpy of formation of −(5128.02 ± 1.94) kJ mol−1 for NaRb[B4O5(OH)4]·4H2O was obtained from the standard molar enthalpies of formation of NaCl(s), RbCl(s), H3BO3(s) and H2O(l). The standard molar entropy of formation of NaRb[B4O5(OH)4]·4H2O was calculated from the Gibbs free energy of formation of NaRb[B4O5(OH)4]·4H2O computed from a group contribution method.  相似文献   

14.
The coordinations of nitrogenous polysaccharide chitosan and chitin to chloro[tetraphenylporphinato]iron(III) have been investigated by means of the FTIR and UV-VIS analysis techniques, and the effect of their coordination on the aerobic oxidation of cyclohexane catalyzed by ironporphyrin has been studied. The new Fe-N coordination bonds between ironporphyrin and chitosan or chitin were found, and their coordination constants K, which were calculated by means of Langmuirs’s adsorption isotherm equation, were 9.68 × 10−4 and 6.80 × 10−4 L/mol, respectively, at equilibrium. It is shown that the coordination of the nitrogenous polysaccharide to ironporphyrin had an important influence on both the conversion and selectivity of the aerobic oxidation of cyclohexane catalyzed by ironporphyrin. The selectivity to the cyclohexanone and cyclohexanol production, the catalyst turnover, and the rate constants k of cyclohexane oxidation increased with increasing coordination constant K. Published in Russian in Kinetika i Kataliz, 2006, Vol. 47, No. 1, pp. 98–102. The text was submitted by the authors in English.  相似文献   

15.
A complex of holmium perchlorate coordinated with l-glutamic acid, [Ho2(l-Glu)2(H2O)8](ClO4)4·H2O, was prepared with a purity of 98.96%. The compound was characterized by chemical, elemental and thermal analysis. Heat capacities of the compound were determined by automated adiabatic calorimetry from 78 to 370 K. The dehydration temperature is 350 K. The dehydration enthalpy and entropy are 16.34 kJ mol−1 and 16.67 J K−1 mol−1, respectively. The standard enthalpy of formation is −6474.6 kJ mol−1 from reaction calorimetry at 298.15 K.  相似文献   

16.
Specific heat capacities (Cp) of polycrystalline samples of BaCeO3 and BaZrO3 have been measured from about 1.6 K up to room temperature by means of adiabatic calorimetry. We provide corrected experimental data for the heat capacity of BaCeO3 in the range T < 10 K and, for the first time, contribute experimental data below 53 K for BaZrO3. Applying Debye's T3-law for T → 0 K, thermodynamic functions as molar entropy and enthalpy are derived by integration. We obtain Cp = 114.8 (±1.0) J mol−1 K−1, S° = 145.8 (±0.7) J mol−1 K−1 for BaCeO3 and Cp = 107.0 (±1.0) J mol−1 K−1, S° = 125.5 (±0.6) J mol−1 K−1 for BaZrO3 at 298.15 K. These results are in overall agreement with previously reported studies but slightly deviating, in both cases. Evaluations of Cp(T) yield Debye temperatures and identify deviations from the simple Debye-theory due to extra vibrational modes as well as anharmonicity. The anharmonicity turns out to be more pronounced at elevated temperatures for BaCeO3. The characteristic Debye temperatures determined at T = 0 K are Θ0 = 365 (±6) K for BaCeO3 and Θ0 = 402 (±9) K for BaZrO3.  相似文献   

17.
We have observed time resolved CS2 fluorescence excited by an N2+ pulsed laser at 3371 Å. The optical absorption in this region is unassigned; we find two fluorescing states with collision free lifetimes of 2.9 ± 0.3 and 17 ± 2 μsec. Deactivation rates for both states are reported for the collision partners CS2, Ar, O2, and N2. All rates are near gas kinetic; the 2.9 ± 0.3 μsec state exhibits exceptionally fast deactivation, with the rate constant for CS2 being (7.9 ± 1.2) × 10−10 cm3/molecule sec.  相似文献   

18.
Hydroboration reactions of 1-octene and 1-hexyne with H2BBr·SMe2 in CH2Cl2 were studied as a function of concentration and temperature, using 11B NMR spectroscopy. The reactions exhibited saturation kinetics. The rate of dissociation of dimethyl sulfide from boron at 25 °C was found to be (7.36 ± 0.59 and 7.32 ± 0.90) × 10−3 s−1 for 1-octene and 1-hexyne, respectively. The second order rate constants, k2, for hydroboration worked out to be 7.00 ± 0.81 M s−1 and 7.03 ± 0.70 M s−1, while the overall composite second order rate constants, k K, were (3.30 ± 0.43 and 3.10 ± 0.37) × 10−2 M s−1, respectively at 25 °C. The entropy and enthalpy values were found to be large and positive for k1, whilst for k2 these were large and negative, with small values for enthalpies. This is indicative of a limiting dissociative (D) for the dissociation of Me2S and associative mechanism (A) for the hydroboration process. The overall activation parameters, ΔH and ΔS, were found to be 98 ± 2 kJ mol−1 and +56 ± 7 J K−1 mol−1 for 1-octene whilst, in the case of 1-hexyne these were found out to be 117 ± 7 kJ mol−1 and +119 ± 24 J K−1 mol−1, respectively. When comparing the kinetic data between H2BBr·SMe2 and HBBr2·SMe2, the results showed that the rate of dissociation of Me2S from H2BBr·SMe2 is on average 34 times faster than it is in the case of HBBr2·SMe2. Similarly, the rate of hydroboration with H2BBr·SMe2 was found to be on average 11 times faster than it is with HBBr2·SMe2. It is also clear that by replacing a hydrogen substituent with a bromine atom in the case of H2BBr·SMe2 the mechanism for the overall process changes from limiting dissociative (D) to interchange associative (Ia).  相似文献   

19.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

20.
The kinetics of the radical reactions of CH3 with HCl or DCl and CD3 with HCl or DCl have been investigated in a temperature controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3 (or CD3) radical, R, was produced homogeneously in the reactor by a pulsed 193 nm exciplex laser photolysis of CH3COCH3 (or CD3COCD3). The decay of CH3/CD3 was monitored as a function of HCl/DCl concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature, typically from 188 to 500 K. The rate constants of the CH3 and CD3 reactions with HCl had strong non-Arrhenius behavior at low temperatures. The rate constants were fitted to a modified Arrhenius expression k = QA exp (−Ea/RT) (error limits stated are 1σ + Students t values, units in cm3 molecule−1 s−1): k(CH3 + HCl) = [1.004 + 85.64 exp (−0.02438 × T/K)] × (3.3 ± 1.3) × 10−13 exp [−(4.8 ± 0.6) kJ mol−1/RT] and k(CD3 + HCl) = [1.002 + 73.31 exp (−0.02505 × T/K)] × (2.7 ± 1.2) × 10−13 exp [−(3.5 ± 0.5) kJ mol−1/RT]. The radical reactions with DCl were studied separately over a wide ranges of temperatures and in these temperature ranges the rate constants determined were fitted to a conventional Arrhenius expression k = A exp (−Ea/RT) (error limits stated are 1σ + Students t values, units in cm3 molecule−1 s−1): k(CH3 + DCl) = (2.4 ± 1.6) × 10−13 exp [−(7.8 ± 1.4) kJ mol−1/RT] and k(CD3 + DCl) = (1.2 ± 0.4) × 10−13 exp [−(5.2 ± 0.2) kJ mol−1/RT] cm3 molecule−1 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号