首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
朱运霞  昂胜  杨锋 《运筹与管理》2021,30(4):184-189
在数据包络分析(DEA)中,公共权重模型是决策单元效率评价与排序的常用方法之一。与传统DEA模型相比,公共权重模型用一组公共的投入产出权重评价所有决策单元,评价结果往往更具有区分度且更为客观。本文考虑决策单元对排序位置的满意程度,提出了基于最大化最小满意度和最大化平均满意度两类新的公共权重模型。首先,基于随机多准则可接受度分析(SMAA)方法,计算出每个决策单元处于各个排名位置的可接受度;然后,通过逆权重空间分析,分别求得使最小满意度和平均满意度最大化的一组公共权重;最后,利用所求的公共权重,计算各决策单元的效率值及相应的排序。算例分析验证了本文提出的基于SMAA的公共权重模型用于决策单元效率评价与排序的可行性。  相似文献   

2.
Data envelopment analysis (DEA) is a data-oriented approach for evaluating the performances of a set of peer entities called decision-making units (DMUs), whose performance is determined based on multiple measures. The traditional DEA, which is based on the concept of efficiency frontier (output frontier), determines the best efficiency score that can be assigned to each DMU. Based on these scores, DMUs are classified into DEA-efficient (optimistic efficient) or DEA-non-efficient (optimistic non-efficient) units, and the DEA-efficient DMUs determine the efficiency frontier. There is a comparable approach which uses the concept of inefficiency frontier (input frontier) for determining the worst relative efficiency score that can be assigned to each DMU. DMUs on the inefficiency frontier are specified as DEA-inefficient or pessimistic inefficient, and those that do not lie on the inefficient frontier, are declared to be DEA-non-inefficient or pessimistic non-inefficient. In this paper, we argue that both relative efficiencies should be considered simultaneously, and any approach that considers only one of them will be biased. For measuring the overall performance of the DMUs, we propose to integrate both efficiencies in the form of an interval, and we call the proposed DEA models for efficiency measurement the bounded DEA models. In this way, the efficiency interval provides the decision maker with all the possible values of efficiency, which reflect various perspectives. A numerical example is presented to illustrate the application of the proposed DEA models.  相似文献   

3.
This paper discusses and reviews the use of super-efficiency approach in data envelopment analysis (DEA) sensitivity analyses. It is shown that super-efficiency score can be decomposed into two data perturbation components of a particular test frontier decision making unit (DMU) and the remaining DMUs. As a result, DEA sensitivity analysis can be done in (1) a general situation where data for a test DMU and data for the remaining DMUs are allowed to vary simultaneously and unequally and (2) the worst-case scenario where the efficiency of the test DMU is deteriorating while the efficiencies of the other DMUs are improving. The sensitivity analysis approach developed in this paper can be applied to DMUs on the entire frontier and to all basic DEA models. Necessary and sufficient conditions for preserving a DMU’s efficiency classification are developed when various data changes are applied to all DMUs. Possible infeasibility of super-efficiency DEA models is only associated with extreme-efficient DMUs and indicates efficiency stability to data perturbations in all DMUs.  相似文献   

4.
Data envelopment analysis (DEA) is a popular technique for measuring the relative efficiency of a set of decision making units (DMUs). Fully ranking DMUs is a traditional and important topic in DEA. In various types of ranking methods, cross efficiency method receives much attention from researchers because it evaluates DMUs by using self and peer evaluation. However, cross efficiency score is usual nonuniqueness. This paper combines the DEA and analytic hierarchy process (AHP) to fully rank the DMUs that considers all possible cross efficiencies of a DMU with respect to all the other DMUs. We firstly measure the interval cross efficiency of each DMU. Based on the interval cross efficiency, relative efficiency pairwise comparison between each pair of DMUs is used to construct interval multiplicative preference relations (IMPRs). To obtain the consistency ranking order, a method to derive consistent IMPRs is developed. After that, the full ranking order of DMUs from completely consistent IMPRs is derived. It is worth noting that our DEA/AHP approach not only avoids overestimation of DMUs’ efficiency by only self-evaluation, but also eliminates the subjectivity of pairwise comparison between DMUs in AHP. Finally, a real example is offered to illustrate the feasibility and practicality of the proposed procedure.  相似文献   

5.
本文通过对Shephard距离函数的引入,正式构建了DEA TOPSIS决策单元排序方法的框架。本文首先定义了正(负)理想决策制定单元(DMU)以及相应的(反)生产可能集,然后在考虑正(负)理想DMU的条件下分别给出DMU的(反)效率评价模型以及对应的Shephard距离函数,然后基于评价对象到理想DMU相对接近度这一综合评价值给出了DMU的一个完全排序。最后,本文通过算例分析说明了该方法的有效性和实用性。  相似文献   

6.
《Optimization》2012,61(11):2441-2454
Inverse data envelopment analysis (InDEA) is a well-known approach for short-term forecasting of a given decision-making unit (DMU). The conventional InDEA models use the production possibility set (PPS) that is composed of an evaluated DMU with current inputs and outputs. In this paper, we replace the fluctuated DMU with a modified DMU involving renewal inputs and outputs in the PPS since the DMU with current data cannot be allowed to establish the new PPS. Besides, the classical DEA models such as InDEA are assumed to consider perfect knowledge of the input and output values but in numerous situations, this assumption may not be realistic. The observed values of the data in these situations can sometimes be defined as interval numbers instead of crisp numbers. Here, we extend the InDEA model to interval data for evaluating the relative efficiency of DMUs. The proposed models determine the lower and upper bounds of the inputs of a given DMU separately when its interval outputs are changed in the performance analysis process. We aim to remain the current interval efficiency of a considered DMU and the interval efficiencies of the remaining DMUs fixed or even improve compared with the current interval efficiencies.  相似文献   

7.
Data envelopment analysis (DEA) is a powerful technique for performance evaluation of decision making units (DMUs). Ranking efficient DMUs based on a rational analysis is an issue that yet needs further research. The impact of each efficient DMU in evaluation of inefficient DMUs can be considered as additional information to discriminating among efficient DMUs. The concept of reference frontier share is introduced in which the share of each efficient DMU in construction of the reference frontier for evaluating inefficient DMUs is considered. For this purpose a model for measuring the reference frontier share of each efficient DMU associated with each inefficient one is proposed and then a total measure is provided based on which the ranking is made. The new approach has the capability for ranking extreme and non-extreme efficient DMUs. Further, it has no problem in dealing with negative data. These facts are verified by theorems, discussions and numerical examples.  相似文献   

8.
Data Envelopment Analysis (DEA) is a mathematical model that evaluates the relative efficiency of Decision Making Units (DMUs) with multiple input and output. In some applications of DEA, ranking of the DMUs are important. For this purpose, a number of approaches have been introduced. Among them is the cross-efficiency method. The method utilizes the result of the cross-efficiency matrix and averages the cross-efficiency scores of each DMU. Ranking is then performed based on the average efficiency scores. In this paper, we proposed a new way of handling the information from the cross-efficiency matrix. Based on the notion that the ranking order is more important than individual efficiency score, the cross-efficiency matrix is converted to a cross-ranking matrix. A cross-ranking matrix is basically a cross-efficiency matrix with the efficiency score of each element being replaced with the ranking order of that efficiency score with respect to the other efficiency scores in a column. By so doing, each DMU assume the role of a decision maker and how they voted or ranked the other DMUs are reflected in their respective column of the cross-ranking matrix. These votes are then aggregated using a preference aggregation method to determine the overall ranking of the DMUs. Comparison with an existing cross-efficiency method indicates a relatively better result through usage of the proposed method.  相似文献   

9.
Variations on the theme of slacks-based measure of efficiency in DEA   总被引:1,自引:0,他引:1  
In DEA, there are typically two schemes for measuring efficiency of DMUs; radial and non-radial. Radial models assume proportional change of inputs/outputs and usually remaining slacks are not directly accounted for inefficiency. On the other hand, non-radial models deal with slacks of each input/output individually and independently, and integrate them into an efficiency measure, called slacks-based measure (SBM). In this paper, we point out shortcomings of the SBM and propose four variants of the SBM model. The original SBM model evaluates efficiency of DMUs referring to the furthest frontier point within a range. This results in the hardest score for the objective DMU and the projection may go to a remote point on the efficient frontier which may be inappropriate as the reference. In an effort to overcome this shortcoming, we first investigate frontier (facet) structure of the production possibility set. Then we propose Variation I that evaluates each DMU by the nearest point on the same frontier as the SBM found. However, there exist other potential facets for evaluating DMUs. Therefore we propose Variation II that evaluates each DMU from all facets. We then employ clustering methods to classify DMUs into several groups, and apply Variation II within each cluster. This Variation III gives more reasonable efficiency scores with less effort. Lastly we propose a random search method (Variation IV) for reducing the burden of enumeration of facets. The results are approximate but practical in usage.  相似文献   

10.
Data envelopment analysis (DEA), considering the best condition for each decision making unit (DMU), assesses the relative efficiency and partitions DMUs into two sets: efficient and inefficient. Practically, in traditional DEA models more than one efficient DMU are recognized and these models cannot rank efficient DMUs. Some studies have been carried out aiming at ranking efficient DMUs, although in some cases only discrimination of the most efficient unit is desirable. Furthermore, several investigations have been done for finding the most CCR-efficient DMU. The basic idea of the majority of them is to introduce an integrated model which achieves an optimal common set of weights (CSW). These weights help us identify the most efficient unit in an identical condition.  相似文献   

11.
The relative efficiency of a DMU is the result of comparing the inputs and outputs of the DMU and those of other DMUs in the PPS (production possibility set). If the inputs and outputs are fuzzy, the DMUs cannot be easily evaluated and ranked using the obtained efficiency scores. In this paper, presenting a new idea for ranking of DMUs with fuzzy data. And finally, we introduce a numerical example.  相似文献   

12.
In this paper we show that data envelopment analysis (DEA) can be viewed as maximising the average efficiency of the decision-making units (DMUs) in an organisation. Building upon this we present DEA based models for: (a) allocating fixed costs to DMUs and (b) allocating input resources to DMUs. Simultaneous to allocating input resources output targets are also decided for each DMU. Numeric results are presented for a number of example problems taken from the literature.  相似文献   

13.
The objective of the present paper is to propose a novel pair of data envelopment analysis (DEA) models for measurement of relative efficiencies of decision-making units (DMUs) in the presence of non-discretionary factors and imprecise data. Compared to traditional DEA, the proposed interval DEA approach measures the efficiency of each DMU relative to the inefficiency frontier, also called the input frontier, and is called the worst relative efficiency or pessimistic efficiency. On the other hand, in traditional DEA, the efficiency of each DMU is measured relative to the efficiency frontier and is called the best relative efficiency or optimistic efficiency. The pair of proposed interval DEA models takes into account the crisp, ordinal, and interval data, as well as non-discretionary factors, simultaneously for measurement of relative efficiencies of DMUs. Two numeric examples will be provided to illustrate the applicability of the interval DEA models.  相似文献   

14.
In efficiency analysis the assessment of the performance of Decision-Making Units (DMUs) relays on the selection of the direction along which the distance from the efficient frontier is measured. Directional Distance Functions (DDFs) represent a flexible way to gauge the inefficiency of DMUs. Permitting the selection of a direction towards the efficient frontier is often useful in empirical applications. As a matter of fact, many papers in the literature have proposed specific DDFs suitable for different contexts of application. Nevertheless, the selection of a direction implies the choice of an efficiency target which is imposed to all the analysed DMUs. Moreover, there exist many situations in which there is no a priori economic or managerial rationale to impose a subjective efficiency target. In this paper we propose a data-driven approach to find out an ‘objective’ direction along which to gauge the inefficiency of each DMU. Our approach permits to take into account for the heterogeneity of DMUs and their diverse contexts that may influence their input and/or output mixes. Our method is also a data-driven technique for benchmarking each DMU. We describe how to implement our framework and illustrate its usefulness with simulated and real data sets.  相似文献   

15.
This paper provides a new structure in data envelopment analysis (DEA) for assessing the performance of decision making units (DMUs). It proposes a technique to estimate the DEA efficient frontier based on the Arash Method in a way different from the statistical inferences. The technique allows decisions in the target regions instead of points to benchmark DMUs without requiring any more information in the case of interval/fuzzy DEA methods. It suggests three efficiency indexes, called the lowest, technical and highest efficiency scores, for each DMU where small errors occur in both input and output components of the Farrell frontier, even if the data are accurate. These efficiency indexes provide a sensitivity index for each DMU and arrange both inefficient and technically efficient DMUs together while simultaneously detecting and benchmarking outliers. Two numerical examples depicted the validity of the proposed method.  相似文献   

16.
Super-efficiency in DEA by effectiveness of each unit in society   总被引:1,自引:0,他引:1  
One of the most important topics in management science is determining the efficiency of Decision Making Units (DMUs). The Data Envelopment Analysis (DEA) technique is employed for this purpose. In many DEA models, the best performance of a DMU is indicated by an efficiency score of one. There is often more than one DMU with this efficiency score. To rank and compare efficient units, many methods have been introduced under the name of super-efficiency methods. Among these methods, one can mention Andersen and Petersen’s (1993) [1] super-efficiency model, and the slack-based measure introduced by Tone (2002) [4]. Each of the methods proposed for ranking efficient DMUs has its own advantages and shortcomings. In this paper, we present a super-efficiency method by which units that are more effective and useful in society have better ranks. In fact, in order to determine super-efficiency by this method, the effectiveness of each unit in society is considered rather than the cross-comparison of the units. To do so, we divide the inputs and outputs into two groups, desirable and undesirable, at the discretion of the manager, and assign weights to each input and output. Then we determine the rank of each DMU according to the weights and the desirability of inputs and outputs.  相似文献   

17.
This study addresses the problem of finding the range of efficiency for each Decision Making Unit (DMU) considering uncertain data. Uncertainty in the DMU coefficients in each factor (input or output) is captured through interval coefficients (ie, these are uncertain but bounded). A two-phase additive Data Envelopment Analysis model for performance evaluation is used, which is adapted to include the concept of super-efficiency to provide a robustness analysis of the DMUs in face of uncertain information, assessing whether each DMU is surely efficient, potentially efficient, or surely inefficient for the uncertainty intervals specified. Another contribution is to present how a maximal stability hyper-rectangle can be computed for each DMU such that its efficiency status does not change when the coefficients vary within that interval.  相似文献   

18.
A characteristic of traditional DEA CCR mode is that it allows DMUs to measure their maximum efficiency score with the most favorable weights. Thus, it would have some shortcomings, for example, the efficiencies of different DMUs obtained by different sets of weights may be unable to be compared and ranked on the same basis. Besides, there are always more than one DMU to be evaluated as efficient because of the flexibility in the selection of weights; it would cause the situation that all DMUs cannot be fully discriminated. With the research gaps, in this paper, we propose two models considering ideal and anti-ideal DMU to generate common weights for performance evaluation and ranking. Finally, two examples of Asian lead frame firms and flexible manufacturing systems are illustrated to examine the validity of the proposed methods.  相似文献   

19.
The traditional data envelopment analysis model allows the decision-making units (DMUs) to evaluate their maximum efficiency values using their most favourable weights. This kind of evaluation with total weight flexibility may prevent the DMUs from being fully ranked and make the evaluation results unacceptable to the DMUs. To solve these problems, first, we introduce the concept of satisfaction degree of a DMU in relation to a common set of weights. Then a common-weight evaluation approach, which contains a max–min model and two algorithms, is proposed based on the satisfaction degrees of the DMUs. The max–min model accompanied by our Algorithm 1 can generate for the DMUs a set of common weights that maximizes the least satisfaction degrees among the DMUs. Furthermore, our Algorithm 2 can ensure that the generated common set of weights is unique and that the final satisfaction degrees of the DMUs constitute a Pareto-optimal solution. All of these factors make the evaluation results more satisfied and acceptable by all the DMUs. Finally, results from the proposed approach are contrasted with those of some previous methods for two published examples: efficiency evaluation of 17 forest districts in Taiwan and R&D project selection.  相似文献   

20.
We classify the contributions of DEA literature assessing Decision Making Units (DMUs) whose internal structure is known. Starting from an elementary framework, we define the main research areas as shared flow, multilevel and network models, depending on the assumptions they are subject to. For each model category, the principal mathematical formulations are introduced along with their main variants, extensions and applications. We also discuss the results of aggregating efficiency measures and of considering DMUs as submitted to a central authority that imposes constraints or targets on them. A common feature among the several models is that the efficiency evaluation of the DMU depends on the efficiency values of its subunits thereby increasing the discrimination power of DEA methodology with respect to the black box approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号