首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potential energy curves for the low-lying electronic states of PdH have been calculated using the MRCI method with scalar relativistic and spin-orbit corrections, and all electronic states correlating to the 4d10 (1S), 4d9 5s1 (3D), 4d9 5s1 (1D) and 4d8 5s2 (3F) states of Pd were included. Potential energy curves for the individual Ω states have been obtained, and the experimentally observed spectra of both PdH and PdD isotopologues have been assigned appropriately based on the ab initio results. Einstein A coefficients were calculated for other possible transitions from the low-lying electronic states to the X2Σ+ ground state. Diagonal and off-diagonal matrix elements of the spin-orbit Hamiltonian were calculated for all vibrational levels of the X2Σ+, 12Δ, 12Π, 22Σ+ and 32Σ+ states, and it was found from the eigenvectors that the vibrational wavefunctions of the 12Δ3/2 and 12Π3/2 states are mixed significantly in both PdH and PdD isotopologues.  相似文献   

2.
The potential energy curves of the low-lying X2Σ+, A2πi, B2Σ+,4Σ+, and 4π states of CN are calculated by the MC SCF (CAS SCF) method. Their vibrational levels and the molecular constants obtained are in good agreement with those determined in our recent experimental analysis of the CN (B2Σ+-X2Σ+) emission spectrum. several intensity anomalies in the observed spectrum are ascribed to perturbations between the B2Σ+ and 4π states with the following vibrational quantum numbers: (υB, υπ)=(9,x), (11, x+2), (12, x+3), (14, x+6), (17, x+11), and (18, x+13), where x = 0 is the most probable assignment. Likewise, the perturbations between the B2Σ+ and 4Σ+ states with (υB, υΣ) = (11, y), (13, y+3) are interpreted as y = 8±1.  相似文献   

3.
Molecular vibrations and electronic structure of the X2Σ+, B2Σ+, D2Σ+, and F2Σ+ states of AlO are studied by carrying out ab initio configuration interaction calculations and molecular vibration calculations using accurate potential energy functions. An avoided crossing between the D2Σ+ and F2Σ+ potential energy curves occurs in the neighborhood of 4.0 a0 and results in irregular vibrational levels of the D and F2Σ+ states. The vibrational constants for the F2Σ+ state are predicted from the vibrational levels not involved in the irregularity. Configuration mixing is important in describing the B, D, and F2Σ+ states. The F2Σ+ state at and around its well minimum and the D and F2Σ+ states in the avoided crossing region are characterized in terms of their main configurations and dipole moment functions.  相似文献   

4.
Multiconfiguration self-consistent field and multiconfiguration reference interaction including the Davidson’s correction techniques were employed to calculate the potential energy curves (PECs) of the BeS/BeS+ electronic states correlating to the 4/5 lowest dissociation limits. After nuclear motion treatment, we deduced reliable spectroscopic data for the neutral and cationic bound states. For BeS, the transition moments and spin-orbit couplings were also evaluated and used later with the PECs to deduce the rovibronic transition probabilities and the radiative lifetimes in the low-lying states, and to investigate the unimolecular decomposition processes of BeS (X1Σ+, A1Π, 3Σ+ and B1Σ+) leading to Be(1Sg) + S(3Pg). The prominent mechanism is a spin-orbit induced predissociation via the repulsive BeS(13Σ) state. Finally, we give the single ionization spectrum of BeS (X1Σ+) populating the BeS+ (X2Π, 12Σ, 12Σ+, 12Δ, 22Σ+, 22Π and 32Π) electronic states. The adiabatic ionisation energy of BeS is estimated to be ∼9.15 eV.  相似文献   

5.
Ab initio multi-reference configuration interaction (MRD CI) calculations were carried out for the potential energy curves of the first 17 electronic states of the CsH molecule up to large bond distances (20 bohr). The1Σ+ states were also calculated by means of relativistic all-electron SCF and CI using the spin-free no-pair operator with external field projectors. For the low-lying states, the spectroscopic parameters were determined. Dipole moments as well as the transition dipole moments: μ(X 1 Σ+A 1 Σ+), μ(X 1 Σ+B 1 Σ+), μ(A 1 Σ+B 1 Σ+), were also calculated. Non-relativistic and relativistic results are compared. An analysis of the interactions in the1,3Σ+ states is also proposed.  相似文献   

6.
Six low-lying electronic states of the PdSi molecule have been investigated by performing all electron ab initio Hartree-Fock (HF) and configuration interaction (CI) calculations. The molecule is predicted to have a3∏ ground state and two low-lying excited states,3Σ? and1Σ+. The electronic structure of the PdSi molecule has been rationalized in a simple molecular orbital diagram. As part of the PdSi molecule the Pd atom essentially retains its (4d)10 ground term configuration. The chemical bond in the PdSi molecule has been interpreted in terms of donation and back-donation of charge. The bond is polar with charge transfer from the Pd to the Si atom. The dissociation energy of the PdSi molecule has been determined from the mass spectrometric equilibrium data in combination with the theoretical results asD 0 o =257±12 kJ mol?1.  相似文献   

7.
All electron ab initio Hartree-Fock (HF), configuration interaction (CI) and multiconfiguration self-consistent field (CASSCF) calculations have been applied to investigate the low-lying electronic states of the NiSi molecule. The ground state of the NiSi molecule is predicted to be1Σ+. The chemical bond in the1Σ+ ground state is a double bond composed of one σ and one π bond. The σ bond is due to a delocalized molecular orbital formed by combining the Ni 4s and the Si 3pσ orbitals. The π bond is a partly delocalized valence bond, originating from the coupling of the 3dπ hole on Ni with the 3pπ electron on Si. Withing the energy range 1 eV 18 electronic states have been identified. The lowest lying electronic states have been characterized as having a hole in either the 3dπ or the 3dδ orbital of Ni, and the respective final states are formed when either of these holes are coupled to the 3pπ valence electron of Si.  相似文献   

8.
《Chemical physics letters》1987,140(4):345-348
The structures and dipole moments of the four low-lying electronic states (X2Π, A2Δ, B2Σ and C2Σ+) of the linear CCN radical are investigated by ab initio calculations at SDCI/DZP and TZP levels. For all the electronically excited states, the dipole moments are calculated to be ≈ 3.0 D. However, a significantly smaller dipole moment, ≈ 0.6 D, is predicted for the ground state. This result is consistent with the recent experiment by Suzuki, Saito and Hirota, where the MODR signals are observed for the A state CCN but not for the X state. Electronic correlation is important in determining both equilibrium bond lengths and dipole moments.  相似文献   

9.
The potential energy curves and transition moments of the ground state of Ca2 and 1Σ+u states correlating with the 1S + 1P and 1S + 1D calcium atoms have been calculated. The calculations support the assignment of the observed emission spectra of Ca2 in the red and in the green to transitions between the ground state and the 1,21Σ+u states. Predissociation of the 11Σ+u state is also shown to be possible from an interaction with the 13Πu state.  相似文献   

10.
Results of CASSCF state-averaged calculations on the lowest electronic states of LaO and LaO+ are reported in this work. For comparison, some low-lying electronic states of AlO and AlO+ are also reported. The ground state of LaO was found to be the X2Σ+ (Re = 1.987 Å, ωe = 794 cm?1) with a low-lying A2Δ excited state. Five more excited states below 26000 cm?1 were found. The first ionization potential (IP ) is found at 5.16 eV, resulting in an X1Σ+ ground state for the LaO+ diatom, in opposition to AlO+ for which an X3 Π ground state has been found. Analysis of the wave functions, dipole moments, and Mulliken populations reveal that the bonding is quite ionic in both systems. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Potential energy curves for low-lying states of BH+ dissociating to B+(1S) + H, B+(3P) + H and B(2P) + H+ have been determined by ab initio calculations. Agreement between experimental and calculated values of the spectroscopic constants for the X2Σ+and A2Π states supports the theoretical predictions concerning the bound B' 2Σ+ state. The 32+ and 22Π states are predicted to be repulsive.  相似文献   

12.
Potential energy curves of 22 electronic states of RhN have been calculated by the complete active space second‐order perturbation theory method. The X1Σ0+ is assigned as the ground state, and the first excited state a3Π0+ is 978 cm?1 higher. The 1Δ(I) and B1Σ+ states are located at 9521 and 13,046 cm?1 above the ground state, respectively. The B1Σ+ state should be the excited state located 12,300 cm?1 above the ground state in the experimental study. Moreover, two excited states, C1Π and b3Σ+, are found 14,963 and 15,082 cm?1 above the X1Σ+ state, respectively. The transition C1Π1–X1Σ0+ may contribute to the experimentally observed bands headed at 15,071 cm?1. There are two excited states, D1Δ and E1Σ+, situate at 20,715 and 23,145 cm?1 above the X1Σ+ state. The visible bands near 20,000 cm?1 could be generated by the electronic transitions D1Δ2–a3Π1 and E1Σ+0–X1Σ+0 because of the spin–orbit coupling effect. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
High level ab initio calculations are performed on the molecular ion LiHe+. Potential energy curves for the low-lying singlet and triplet electronic states are calculated using the multi-reference configuration interaction and single-reference coupled cluster methods with large basis sets. The corresponding dipole moments and transition dipole moments functions are also determined. The basic spectroscopic properties and excitation energies of the electronic states are derived from rovibrational bound state calculations.  相似文献   

14.
The ground and low-lying excited states of TiC are investigated using a CASSCF—externally contracted Cl approach. The calculations yield a 3Σ+ ground state, but the 1Σ+ state is only 780 cm?1 higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.  相似文献   

15.
We present relativistic configuration interaction calculations with the spin-free no-pair hamiltonian on the gold hydride molecule, treating the ground state as well as the eleven lowest excited states. The calculations provide a picture of the bonding in theX 1Σ+ ground state consistent with previous work on this species using four-component spinors: compared to non-relativistic calculations, the dipole moment is reduced by a factor of two, hybridization (and thus participation ofd orbitals at the bonding) is greatly enhanced, the bond length is shortened by 20 pm, and the dissociation energy is increased by 50%. Comparison of the spin-averaged potential curves of the excited states with experiment suggests a reinterpretation of theC 1Σ+ as the 0+ fine structure component of 23Π and the prediction of a weakly bound3Σ+ state with weak transitions to the ground state in the range of 2.9–3.1 eV.  相似文献   

16.
The structure and spectroscopic properties of the ground and the lowest excited electronic states of the alkali hydride cation NaH+ have been investigated using an ab initio approach. In this approach, a nonempirical pseudopotential for the Na+ core has been used and a core–core and a core‐valence correlation corrections have been added. The adiabatic potential energy curves and the molecular spectroscopic constants for numerous electronic states of 2Σ+, 2Π, and 2Δ symmetries, dissociating up to Na (4d) + H+ and Na+ + H (3d), have been calculated. As no experimental data are available, we discuss our results by comparing with the available theoretical calculations. A satisfying agreement has been found for the ground state with previous works. However, a clear disagreement between this study and the model potential work of Magnier (Magnier, J. Phys. Chem. A 2005, 109, 5411) has been observed for several excited states. Numerous avoided crossings between electronic states of 2Σ+ and 2Π symmetries have been found and analysed. They are related to the interaction between the potential energy curves and to the charge transfer process between the two ionic systems Na+H and NaH+. Furthermore, we provide an extensive set of data concerning the transition dipole moments from X2Σ+ and the 22Σ+ states to higher excited states of 2Σ+ and 2Π symmetries. Finally, the adiabatic potential energy curves of the ground (X2Σ+) and the first (22Σ+) excited states and the transition dipole moments between these states are used to evaluate the radiative lifetimes for the vibrational levels of the 22+ state for the first time. In addition to the bound–bound contribution, the bound‐free term has been evaluated and added to the total radiative lifetime. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
《Chemical physics letters》1986,123(6):533-536
The eight low-lying doublet states of the NH+ ion are investigated with an ab initio configuration interaction method including all single and double excitations from a multi-reference configuration space (MRSD CI). The spectroscopic constants for the X2Π, A2Σ,B2Δ and C2Σ+ states and the transition moments for X2Π-A 2Σ−1 and X2Π-B2Δ are calculated. The results are compared with experiments and other calculations.  相似文献   

18.
The potential energy curves PMO—RKR—van der Waals of the electronic A1Σ+ and X1Σ+ states of RbH have been determined. The potentials obtained are self-consistent with the experimental data because they have been tested by direct numerical solution of the radial Schrödinger equation. From exact vibrational eigenfunctions probability density distributions and Franck—Condon factors have been calculated over the range of vibrational levels observed. It is observed that the anomalous behaviour of the A1Σ+ state arises in the υ′ = 1, 2 and 3 levels with probability density functions similar to those of a harmonic oscillator.  相似文献   

19.
Potential energy curves of the states X 2Σ+, B (1)2Σ+ and A (1)2Π of the NaHe molecule have been calculated accurately in a large range of internuclear distances R from SA-CASSCF-MRCI calculations, using molecular orbitals expanded in cc-pV5Z basis sets. Transition dipole moments have also been calculated for the X–B, X–A and A–B transitions, in the same range of R. Their long-range behaviour have been considered.  相似文献   

20.
Ab initio multi-configuration self-consistent field and first-order configuration interaction (FOCI) calculations in an extended basis set have been carried out for the lower energy electronic states of Al2. The ten core electrons of each Al atom were replaced by an accurate compact effective core potential. The FOCI calculated To value for the 3Σg?-3Σu? transition agrees with the experimentally observed emission band to within 90 cm?1. 3Πu is calculated to be the electronic ground state of Al2. Based on FOCI energies and qualitative intensity arguments, the reported optical absorption spectrum of matrix isolated Al2 also agrees best with a 3Πu ground state. The 3Σg?1 state is calculated (Te) at only 324 cm?1 above the 3Πu state, and the 1ΣEg+ state is predicted to lie higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号