首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.  相似文献   

3.
In this work we present the experimental vibrational absorption (VA), vibrational circular dichroism (VCD) and Raman spectra for (+)-trans-1(S),2(S)-dicyanocyclopropane and its dideuterio derivative, trans-1(S),2(S)-dicyano-1(S),2(S)-dideuteriocyclopropane, along with VA, VCD, Raman and Raman optical activity (ROA) spectral simulations. Here we investigate the applicability of various local and non-local exchange-correlation (XC) functionals, hybrids and meta-hybrids to reproduce the vibrational spectra of this strained ring system, which also bears two cyano groups. At the highest level of theory, B3PW91/ aug-cc-pVTZ, we also investigated the trans-, cis- and gem-dicyanocyclopropane (trans-, cis-, and gem-DCCP), cyanocyclopropane (CCP) and the parent molecule cyclopropane (CP). In doing so we have investigated the electronic effects (coupling) between the cyano groups and the cyclopropane ring. In addition to providing an interpretation of the experimentally observed vibrational spectra for these molecules, this work also provides benchmark calculations for other methods, especially semi-empirical based wave function and density functional theory (DFT) based methods, such as SCC-DFTB and PM6. For the semi-empirical DFT based methods to be used for 3-membered ring systems, one ought to document their reliability for systems which were not used in the parameterization. The small 3- and 4-membered ring systems are good test systems because they contain non-standard bonding, which may be difficult to determine accurately with the approximations used in the SCC-DFTB and other semi-empirical methods. Like molecular mechanics force fields, semi-empirical methods, based on DFT and wave function quantum mechanics (WFQM), must be benchmarked against high level ab initio and DFT calculations and experimental data. In addition to bonding, the changes in the electric dipole moment, magnetic dipole moment, electric dipole-electric dipole polarizability, electric dipole-magnetic dipole polarizability and electric dipole-electric quadrupole polarizability with respect to nuclear displacement and nuclear velocity can be determined by the VA, VCD, Raman and ROA intensities. Hence it is important that the semi-empirical based DFT and wave function methods not only be parameterized to determine energies, gradients and Hessians, but also the electric and magnetic moments and their derivatives that determine the electronic and magnetic properties of these molecules and their interactions with matter and radiation. This will allow biochemists, biophysicists, molecular biologists, and physical biologists to use experimental and theoretical VA, VCD, Raman and ROA spectroscopies to probe biophysical and biochemical function and processes at the molecular level. Festschrift in Honor of Philip J. Stephens’ 65th Birthday.  相似文献   

4.
Electric light scattering and microelectrophoresis were applied to investigate the electric moments (permanent dipole moment and electric polarizability and electrophoretic mobility of envelope-free chloroplasts and photosystem II (PS II particles. The effect of the removal of the extrinsic polypeptides (18, 24 and 33 kDa) on the electric moments was also studied. A significant difference was observed between the orientation behaviour of chloroplasts and PS II preparations. The data indicate that the permanent and induced dipole moments contribute to the orientation of the PS II particles, whereas chloroplasts possess induced dipole moment only.

NaCl and Tris treatments of PS II preparations influence both the transverse permanent dipole moment and the electric polarizability of PS II particles. The increase in the electrophoretic mobility of PS II particles on removal of the extrinsic proteins corresponds to an increase in the electric polarizability value, demonstrating its interfacial nature.  相似文献   


5.
The electric dipole moment and the static dipole polarizability of the hydrogen iodide molecule were studied using sophisticated correlated and relativistic methods. Both scalar and spin–orbit relativistic effects were carefully accounted for. We conclude that the large differences between the theoretical and experimental dipole moment, the dipole moment derivative and the polarizability cannot be reconciled by improved account of electron correlation and relativistic effects. The most striking difference between theory and experiment is observed for the polarizability anisotropy. We believe that experimental data, namely the experimental dipole moment (the most recent value is 0.176 au as compared to our best theoretical estimate, 0.154±0.003 au), the parallel polarizability (44.4 and 38.47±0.05 au) and the anisotropy (11.4 and 2.33±0.05 au) must be inaccurate. Experimental and theoretical perpendicular polarizability components (33.0 and 36.14±0.05 au,) and the mean polarizability (36.8 and 36.92±0.05 au) agree better. Our vibrationally corrected relativistic CCSD(T) results represent the most sophisticated predictions of electric properties of HI obtained so far.Contribution to the Björn Roos Honorary Issue  相似文献   

6.
We use a variation–perturbation method to calculate the electric polarizabilities and the electric dipole moment of the LiH molecule. We obtain 4.455 for the perpendicular polarizability and 4.001 (×10?24 cm3) for the parallel polarizability. Our result for the electric dipole moment at equilibrium nuclear distance is 5.866, which is in excellent agreement with the experimental value 5.828 debye units.  相似文献   

7.
The permanent dipole moment and electric polarizability of purple membrane have been found using electrooptic methods. Comparison of the results with those for other inorganic or biological disperse particles as well as the observed effects and dynamics for a large range of applied electric field strengths support the proposal of a surface origin for the electric polarizability of purple membrane.  相似文献   

8.
9.
10.
The methods for the experimental determination of electric dipole moment of molecules in solution from measurements of dielectric permittivity and refractive index are traditionally based on the classical Onsager model. In this model the molecular solute is approximated as a simple polarizable point dipole inside a spherical or ellipsoidal cavity of a dielectric medium representing the solvent. However, the inadequacies of the model resulting from the assumption of a simple shape of the cavity, for the evaluation of the cavity field effect, and from the uncertainty of the polarizability of the molecular solute influences the results and hampers the comparison with the electric dipole moments computed from quantum chemical solvation models. In this article we propose a new method for the experimental determination of the electric dipole moment in solution in which information from the Polarizable Continuum Model calculations are used in place of the Onsager model. The new method overcomes the limitations of this latter model regarding both the cavity field effect and the polarizability of the molecular solutes, and thus allows a coherent comparison between experimental and computed dipole moments of solvated molecules. © 2019 Wiley Periodicals, Inc.  相似文献   

11.
External electric field effects on absorption, fluorescence, and phosphorescence spectra of a series of unsubstituted diphenylpolyynes have been examined in a PMMA film. The analysis of the electroabsorption spectra indicates that the shorter diphenylpolyynes exhibit only the change in molecular polarizability, whereas the longer ones exhibit the change both in dipole moment and in molecular polarizability following absorption. The finding of the change in dipole moment following absorption of centrosymmetric diphenylpolyynes is interpreted in terms of the symmetry distortion upon doping a polymer film. When the external electric field is applied, the fluorescence yield is reduced and enhanced, respectively, in diphenylacetylene and diphenyloctatetrayne, indicating that the rate of the nonradiative process from the fluorescence state is accelerated in diphenylacetylene and decelerated in diphenyloctatetrayne by an external electric field. All of the diphenylpolyynes used in the present study exhibit the change in molecular polarizability following the phosphorescence process.  相似文献   

12.
The dielectric response to an inhomogeneous electric field has been investigated for Pb(N) clusters (N=7-38) within a molecular beam experiment. The experiments give clear evidence that lead clusters with 12, 14, and 18 atoms possess permanent dipole moments. For these cluster sizes, the permanent electric dipole moments strongly determine the response to the electric field, leading to a significantly increased apparent polarizability. An adiabatic polarization mechanism allows a semiquantitative explanation of the observed susceptibility anomalies. The beam profiles of most of the lead clusters with N not equal12, 14, and 18 also display a small broadening induced by the electric field, indicating permanent dipole moments of about (0.01-0.02) D/atom. Nearly constant dipole moments per atom for larger lead clusters (N>20) manifest in a linear increase in the polarizability per atom. Also, for lead clusters such as Pb(25), which do exhibit almost no measurable beam broadening, the polarizabilties are increased compared to the bulk value. This could be partially explained by the electronic structure of the lead clusters but might be also a consequence of quenched permanent dipole moments because for highly flexible clusters only an increased beam deflection, but no broadening, will be observed.  相似文献   

13.
The exact analytical expression for the electric dipole polarizability of the two-particle charged bound system with a short-range interaction of an arbitrary form is obtained within the three-particle theory.  相似文献   

14.
Molecular dipole moments and polarizabilities, as well as their geometrical derivatives, are given analytical expressions for multiconfiguration self-consistent-field and configuration interaction wavefunctions. By considering the response of the electronic wavefunction induced by electric field and geometrical displacement terms in the Hamiltonian, the response of the total electronic energy to these terms is analyzed. The dipole moment and polarizability are then identified through the factors in the energy which are linear and quadratic in the electric field, respectively. Derivatives with respect to molecular deformation are obtained by identifying factors in these moments which are linear, quadratic, etc., in the distortion parameter. The analytical derivative expressions obtained here are compared to those which arise through finite-difference calculations, and it is shown how previous configuration-interaction-based finite difference dipole moment and polarizability derivatives are wrong. The proper means of treating such derivatives are detailed.  相似文献   

15.
In this work, a general scheme to visualize polarizability density distributions is proposed and implemented in a Hirshfeld‐based partitioning scheme. This allows us to obtain easy‐to‐interpret pictorial representations of both total and intrinsic polarizabilities where each point of the density is formed by the contribution of any atom or group of atoms in the molecule. In addition, the procedure used here permits the possibility of removing the size dependence of the electric‐dipole polarizability. Such a development opens new horizons in exploring new applications for the analysis of the molecular polarizability tensor. For instance, this visualization shows which atoms or regions are more polarizable distinguishing, moreover, the fine structure of atoms affected by the vicinity, and might extend the dipole polarizability as a tool for aromaticity studies in polycyclic aromatic hydrocarbons. Additionally, this approach can serve us to assess the methods performance in describing the interaction of electric fields with a molecule and local electron correlation effects in intrinsic polarizabilities. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
We use a previously proposed variation-perturbation method to calculate the electric polarizabilities and the electric dipole moment at equilibrium nuclear distance of the BH molecule. We obtain 3.56 × 10?24 cm3 for the perpendicular polarizability αxx and 3.22 × 10?24 cm3 for the parallel polarizability αzz. Our result for the electric dipole moment μ0 is 1.734 debye units; there is no reliable experimental result to compare it with.  相似文献   

17.
The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few illustrative numerical calculations are shown to predict the molecular polarizabilities in good agreement with available results. The usefulness of the approach to the calculation of intermolecular interaction needed for computer simulation is highlighted.  相似文献   

18.
The position and the intensity of electronic bands are influenced by an electric field. Pronounced changes in the position of absorption bands are mainly due to the dipole moment of the molecule in the ground state and the change in the dipole moment during the excitation process, and pronounced changes in intensity are due to the field dependence of the transition moment, which can be described by the transition polarizability. The effect of an external electric field on the optical absorption (electrochromism) of suitable molecules can be used to determine the dipole moment in the ground state, the change in dipole moment during the excitation process, the direction of the transition moment of the electronic band, and certain components of the transition polarizability tensor. These data largely determine the strong solvatochromism (solvent-dependence of the position and intensity of electronic bands), which is observed in particular with molecules having large dipole moments. Smaller contributions to solvatochromism result from dispersion interactions, which predominate in the case of nonpolar molecules. The models developed have been experimentally checked and verified by a combination of electro-optical absorption measurements (influence of an external electric field on absorption) and investigation of the solvent-dependence of the electronic bands.  相似文献   

19.
K. V. Erin 《Colloid Journal》2008,70(4):430-435
The permanent electric moments and the electric polarizability anisotropy of particle aggregates are determined from the results of measuring the birefringence of a magnetite colloidal solution in kerosene subjected to constant and pulsed electric fields. A possible mechanism of generating an induced dipole moment in the aggregates is analyzed. The moment is characterized by a long relaxation time and, according to the results of optical experiments, is interpreted as permanent. The calculated dipole moments are consistent with the experimental data in the order of magnitude.  相似文献   

20.
We report implementations and results of time-dependent density functional calculations (i) of the frequency-dependent magnetic dipole-magnetic dipole polarizability, (ii) of the (observable) translationally invariant linear magnetic response, and (iii) of a linear intensity differential (LID) which includes the dynamic dipole magnetizability. The density functional calculations utilized density fitting. For achieving gauge-origin independence we have employed time-periodic magnetic-field-dependent basis functions as well as the dipole velocity gauge, and have included explicit density-fit related derivatives of the Coulomb potential. We present the results of calculations of static and dynamic magnetic dipole-magnetic dipole polarizabilities for a set of small molecules, the LID for the SF6 molecule, and dispersion curves for M-hexahelicene of the origin invariant linear magnetic response as well as of three dynamic polarizabilities: magnetic dipole-magnetic dipole, electric dipole-electric dipole, and electric dipole-magnetic dipole. We have also performed comparison of the linear magnetic response and magnetic dipole-magnetic dipole polarizability over a wide range of frequencies for H2O and SF6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号