首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Configuration interaction calculation are employed to study the X 2Σ+g, A 2Πu, B 2Σ+u, 4Σ+u and 4Δu states of the C?2 ion. The results are in good quantitative agreement with experimental findings for the Herzberg—Lagerquist (2Σ+u-2Σ+g) bands and predict a Te value for the 2Πu state of only 0.40 eV; corresponding transition moment results are obtained as a function of CC distance. The Cl electron affinity is 3.43 eV, in good agreement with the most recent experimental estimate for this quantity.  相似文献   

2.
Local potential calculations have been carried out for the first eight 2Σg, 2Σu and the first five 2Πg, 2Πu states of Li2+. The results indicate the usefulness of calculating highly excited potential curves by a local potential method.  相似文献   

3.
LCGTO-MP-LSD calculation was performed for the ground and several low-lying excited states of homo- (N2, P2, As2, and Sb2) and hetero-nuclear (PN, AsN, AsP, AsSb, SbN, and SbP) groupVA diatomics. For all the systems the ground state is found to be1Σ+. For N2 and P2, the1Σ g + ground state is followed by the3Σ u + ,3Π g ,3Δ u ,1Π g , and1Δ u low-lying exited states while for As2 the order is found to be3Σ u + ,3Δ u ,3Π g ,1Δ u ,1Π g . Finally for Sb2 the relative stability of excited states is3Σ u + ,3Δ u ,1Δ u ,3Π g ,1Π g . For the hetero-nuclear diatomics the1Σ+ ground state is, in the case of PN, AsN, AsP, SbN, and SbP, followed by the3Σ+,3Δ,3Π,1Π and1Δ low-lying excited states while for the AsSb diatomic an inversion of stability of the two last singlets occurs. The calculated spectroscopic parameters (Re, ωe, andDe) are in good agreement with all the available experimental results while, theTe values are overestimated by about 0.5 eV. Mulliken population analysis shows that both homo- and hetero-nuclear groupVA diatomics are essentially triple bonded systems.  相似文献   

4.
Multireference configuration interaction wave functions with single and double excitations were calculated for the 1Σ+g ground state of the C2 molecule and the excited states of C+2 with symmetries 2Σ+g, 2Σ-u, 2Πu, and 2Πg. The corresponding σg, σu, πu, and πg valence Dyson orbitals were calculated. Most of the density due to the valence electrons is accounted for by three σg, one σu, and one degenerate pair of πu Dyson orbitals. Electron correlation plays an important role in the bond strength of C2 by increasing the occupation of the σg valence orbitals and decreasing the occupation of the σu and πu valence orbitals. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
The Equations of Motion method has been applied in the calculation of potential energy curves for the X2Σ+g, A2Πu and B2Σ+u states of N+2. Results are also reported for a new dissociative 2Σ+g state. The theoretical curves are directly compared with the experimental ones as well as in terms of spectroscopic constants. The applicability of the Equations of Motion method to this type of problem is critically examined and discussed with regard to the choice of basis set, numerical effort and agreement with experiment.  相似文献   

6.
CI calculations have been carried out for the prediction of the ground state geometry and of the vertical spectrum of N3. The first three states are 2Πg, 4Πu and 2Σ+u. The C∞v correlation diagram for the first dissociation limits is discussed by taking into account possible nonadiabatic pathways.  相似文献   

7.
The 2Σ+g, 2Πu, and 2Σ+u vertical ionization energies of nitrogen are obtained by using our theory of molecular electron affinities and ionization potentials, which permits the direct calculation of the ion-molecule energy differences. The contributions of charge redistribution and correlation energy change to the calculated ionization potentials are evaluated. The computational efficiency of the method is illustrated and comparisons are made with recent experimental results.  相似文献   

8.
The absorption of photons by Li2 from the X 1Σ+g state to the A 1Σ+u and B 1Πu states is considered and the mechanisms that lead to dissociation are studied quantitatively. Calculations are reported on the direct predissociation of the b 3Πu state. The significance of accidental predissociation of the A 1Σ+u state is discussed and a quantal theory of the process is presented.  相似文献   

9.
The electron affinity and first three ionization potentials of C3 are calculated using the multiconfigurational SCF and configuration interaction methods and by Möller-Plesset perturbation theory. Whereas Koopmans' theorem and SCF calculations indicate that the first cation state is 2Πu, upon inclusion of correlation effects both the 2Σu and 2Σg cation states are found to lie lower in energy. CI calculations indicate that the ground state (2Πg) anion is stable by 1.74 eV. Allowing for the error in the calculated electron affinity of the carbon atom, C3? is estimated to be stable by 2.0 eV, in excellent agreement with the 2.05 eV value determined from recent photodetachment measurements. No excited anion states are found to be bound at the equilibrium geometry of the neutral molecule.  相似文献   

10.
Ab initio multi-configuration self-consistent field and first-order configuration interaction (FOCI) calculations in an extended basis set have been carried out for the lower energy electronic states of Al2. The ten core electrons of each Al atom were replaced by an accurate compact effective core potential. The FOCI calculated To value for the 3Σg?-3Σu? transition agrees with the experimentally observed emission band to within 90 cm?1. 3Πu is calculated to be the electronic ground state of Al2. Based on FOCI energies and qualitative intensity arguments, the reported optical absorption spectrum of matrix isolated Al2 also agrees best with a 3Πu ground state. The 3Σg?1 state is calculated (Te) at only 324 cm?1 above the 3Πu state, and the 1ΣEg+ state is predicted to lie higher.  相似文献   

11.
A configuration interaction study of different electronic states of N+2 has been performed. The position in energy and the relative intensity of the photoelectron bands of the 2Σ+u states has been calculated and compared with experiment. The C2Σ+u state is predissociated by a 4Πu state, as previously supposed. However, owing to the attractive nature of the 4Πu state a double crossing occurs. Several predissociation mechanisms of the C state can therefore take place; their lifetimes have been calculated.  相似文献   

12.
The constructive model potential approach of Bottcher and Dalgarno is used in the calculation of some molecular properties of two electronic states, 2Σg+ and 2Πu, of Li2+ at several internuclear distances. The results agree well with ab initio calculations.  相似文献   

13.
The potential energy curves of 26 electronic states of 2Σ+g, u, 2Πg, u, and 2Δg, u symmetries of the alkali dimer Na2+, dissociating up to Na(4d) + Na+, are investigated using an ab initio approach involving a nonempirical pseudopotential for the Na+(1s22s22p6) core and core‐valence correlation corrections. Furthermore, the transition dipole functions between many electronic states and vibrational energy spacings are presented. The spectroscopic constants of these electronic states are extracted and compared with the available theoretical and experimental results. A very good agreement is observed, especially, for the ground and the first excited states. However, the comparison between our study and the model potential (MP) calculations (Magnier and Masnnou‐Seeuws Mol. Phys. 1996, 89, 711) for several states has shown a clear disagreement. The MP well depths of the 3‐42Σ+g, 12Πg, 3‐42Πg, and 22Πu electronic states are largely underestimated. In addition, the 5‐72Σ+g, 3‐72Σ+u, 22Πg, 42Πg, and 1‐22Δu MP electronic states are repulsive, although in this work, they are attractive with potential well depths of some hundreds of cm?1. The data presented in this study are very useful for studies on ion–atom interaction and cold collision in the presence of electromagnetic fields. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Ab initio calculations in the “first-order wavefunction” CI approximation have been performed for several states of N2+ with 2Σu+, 2Σu?, 4Πu symmetry. A calculation of the electronic factor of the vibronic interaction between the B2Σu+ and C2Σu+ states seems to support the suggestion of Tellinghuisen and Albritton that the C state is predissociated by the continuum of the B state through nuclear momentum coupling.  相似文献   

15.
The emission spectrum of the dicyanoacetylene radical cation has been observed in the 580–720 nm wavelength region as a result of low energy electron impact excitation in a crossed-beam arrangement. The band system is attributed to the Ã2Σ+g → X?2Πu electronic transition by comparison with the photoelectron spectroscopic and calculated data on the states of dicyanoacetylene cation. The frequencies of the three Σ+g vibrational fundamentals in the ground cation state have been deduced from the emission spectrum. The lifetime of the lowest vibrational level of the Ã2Σ+g state of dicyanoacetylene cation was determined to be 13 ± 2 ns. Emission could not be detected from the corresponding states, Ã2Σ+, of fluorocyanoacetylene and cyanoacetylene cations, and these results are discussed.  相似文献   

16.
The CASPT2 potential energy curves (PECs) for O‐loss dissociation from the X2Π, A2Π, B2Σ+, C2Σ+, 14Σ?, 12Σ?, and 14Π states of the OCS+ ion were calculated. The PEC calculations indicate that X2Π, 14Σ?, 12Σ?, and 14Π correlate with CS+(X2Σ+) + O(3Pg); A2Π and B2Σ+ correlate with CS+(A2Π) + O(3Pg); and C2Σ+ probably correlates with CS+(X2Σ+) + O(1Dg). The CASSCF minimum energy crossing point (MECP) calculations were performed for the C2Σ+/14Σ?, C2Σ+/14Π, A2Π/14Σ?, A2Π/12Σ?, A2Π/14Π, and B2Σ+/12Σ? state pairs and the spin‐obit couplings were calculated at the located MECPs. A conical intersection point between the B2Σ+ and C2Σ+ potential energy surfaces was found at the CASSCF level. Based on our calculations, seven O‐loss predissociation processes of the C2Σ+ state are suggested and an appearance potential value of 7.13 eV for the CS+ + O product group is predicted. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
The S+2 (A2Πu-X2Πg) emission system from sulphur monochloride in a helium flowing afterglow has been analysed in the 5000–6000 Å region. Molecular constants for the S+2 (A2Πu, X2Πg) states have been determined and are compared with previous estimates. Equilibrium bond lengths of S+2 are found to be: X2Πg,re = 1.8226 ± 0.0010 Å and A2Πu, re = 2.0441 ± 0.0013 Å.  相似文献   

18.
《Chemical physics letters》1986,129(4):425-428
The puzzling violet bands of sodium ( ≈ 425-460 nm), known since 1932, are shown conclusively to arise from the superposition of two distinct continuum emission bands - one singlet (2 1Σ+u → X 1Σ+g) and one triplet (primarily 2 3Πg → 1 3Πu+). Each continuum emission system shows complex interference structure arising from multiple branches of the Mulliken difference potential.  相似文献   

19.
Potential curves for the ground (2Σ u + ) and the three lowest excited states of the Xe 2 + dimer ion (2Π g ,2Π u ,2Σ g + ) have been calculated using pseudopotentials in MRD-CI (multi-reference single anddouble excitationconfigurationinteraction) calculations. Spin-orbit interaction — leading to the six states 1.(1/2) u , 1.(3/2) g , 1.(3/2) u , 1.(1/2) g , 2.(1/2) u , 2.(1/2) g — has been taken into account using a semiempirical technique [1]. Subsequently, starting with a relaxed Xe 2 + ion in its ground state, the potential energy surface for the system Xe-Xe 2 + was studied. We found that the collinear approach of the Xe atom leads to the most stable geometry. This is a linear symmetric molecule with bond lengths of 6.38 bohr. In the bestT-shaped structure, the Xe atom is 7.83 bohr away from the midpoint of the Xe 2 + (r=6.1 bohr) dimer. The calculated binding energy of 0.25 eV for the equilibrium structure of the Xe 3 + molecule (i.e. the linear symmetric geometry), is in very good agreement with experimental results of 0.27 ± 0.02 eV [2].  相似文献   

20.
A number of dissociation channels in N20 have been observed by time-of-flight spectroscopy following electron impact excitation. The metastable atoms and molecules produced were directly detected. Excited N2 molecules were produced in the A3Σu+, B3Πg and B′3Σu? states in conjunction with ground state oxygen atoms. A number of additional dissociation channels were monitored by observing the production of oxygen and nitrogen atoms in Rydberg states. The results indicate the existence of potential minima in some of the repulsive surfaces involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号