首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new interatomic potential for dissociative water was developed for use in molecular dynamics simulations. The simulations use a multibody potential, with both pair and three-body terms, and the Wolf summation method for the long-range Coulomb interactions. A major feature in the potential is the change in the short-range O-H repulsive interaction as a function of temperature and/or pressure in order to reproduce the density-temperature curve between 273 K and 373 at 1 atm, as well as high-pressure data at various temperatures. Using only the change in this one parameter, the simulations also reproduce room-temperature properties of water, such as the structure, cohesive energy, diffusion constant, and vibrational spectrum, as well as the liquid-vapor coexistence curve. Although the water molecules could dissociate, no dissociation is observed at room temperature. However, behavior of the hydronium ion was studied by introduction of an extra H+ into a cluster of water molecules. Both Eigen and Zundel configurations, as well as more complex configurations, are observed in the migration of the hydronium.  相似文献   

2.
In this work, we have developed a polarizable classical interaction potential to study actinoids(III) in liquid water. This potential has the same analytical form as was recently used for lanthanoid(III) hydration [M. Duvail, P. Vitorge, and R. Spezia, J. Chem. Phys. 130, 104501 (2009)]. The hydration structure obtained with this potential is in good agreement with the experimentally measured ion-water distances and coordination numbers for the first half of the actinoid series. In particular, the almost linearly decreasing water-ion distance found experimentally is replicated within the calculations, in agreement with the actinoid contraction behavior. We also studied the hydration of the last part of the series, for which no structural experimental data are available, which allows us to provide some predictive insights on these ions. In particular we found that the ion-water distance decreases almost linearly across the series with a smooth decrease of coordination number from nine to eight at the end.  相似文献   

3.
4.
Molecular dynamics integrators are presented for translational and rotational motion of rigid molecules in microcanonical, canonical, and isothermal-isobaric ensembles. The integrators are all time reversible and are also, in some approaches, symplectic for the microcanonical ensembles. They are developed utilizing the quaternion representation on the basis of the Trotter factorization scheme using a Hamiltonian formalism. The structure is similar to that of the velocity Verlet algorithm. Comparison is made with standard integrators in terms of stability and it is found that a larger time step is stable with the new integrators. The canonical and isothermal-isobaric molecular dynamics simulations are defined by using a chain thermostat approach according to generalized Nosé-Hoover and Andersen methods.  相似文献   

5.
An empirical modified boundary potential has been derived to correct the structural perturbations arising from the presence of the vacuum boundary in the simulation of spherical TIP4P water systems. The potential is parameterized for a 12.0-Å sphere of TIP4P water and gives improved number density and orientational sampling behavior. It is also transferable to both larger and smaller simulation systems with only a moderate degradation in performance. Free-energy calculations have been conducted for the perturbation of a TIP4P water molecule to methane under aqueous conditions, and the modified boundary potential gives results consistent with those from simulations using periodic boundary conditions. However, simple half-harmonic boundary potentials give unsatisfactory number density, orientational sampling, and free-energy results. Moreover, use of the modified boundary potential results in a negligible increase in simulation time. It is envisaged that the modified boundary potential will find use in free-energy perturbation calculations on proteins with a solvent sphere centered on the active site. © 1995 by John Wiley & Sons, Inc.  相似文献   

6.
Accurate partition coefficient data of migrants between a polymer and a solvent are of paramount importance for estimating the migration of the migrant over time, including the concentration of the migrant at infinite time in the two solvents. In this article it is shown how this partition coefficient can be estimated for both a small hydrophilic and a hydrophobic organic molecules between squalane (used here to mimic low density poly ethylene) and water/ethanol solutes using thermodynamic integration to calculate the free energy of solvation. Molecular dynamics simulations are performed, using the GROMACS software, by slowly decoupling of firstly the electrostatic and then the Lennard-Jones interactions between molecules in the simulation box. These calculations depend very much on the choice of force field. Two force fields have been tested in this work, the TraPPE-UA (united-atom) and the OPLS-AA (all-atom). The computational cheaper TraPPE-UA force field showed to be more accurate over the whole range of systems compared to the OPLS-AA force field. Moreover, some of the calculations were done with five different water models to investigate the influence of the specific water model on the calculations. It was found that the combination of the TraPPE-UA force field and the TIP4p water model gave the best results. Based on the methodology proposed in this article, it is possible to obtain good partition coefficients only knowing the chemical structure of the molecules in the system.  相似文献   

7.
The quantitative estimation of the total interaction energy of a molecular system containing hydrogen bonds (H bonds) depends largely on how to identify H bonding. The conventional geometric criteria of H bonding are simple and convenient in application, but a certain amount of non-H bonding cases are also identified as H bonding. In order to investigate the wrong identification, we carry out a systematic calculation on the interaction energy of two water molecules at various orientation angles and distances using ab initio molecular dynamics method with the dispersion correction for the Becke-Lee-Yang-Parr (BLYP) functionals. It is shown that, at many orientation angles and distances, the interaction energies of the two water molecules exceed the energy criterion of the H bond, but they are still identified as H-bonded by the conventional "distance-angle" criteria. It is found that in these non-H bonding cases the wrong identification is mainly caused by short-range interaction between the two neighbouring water molecules. We thus propose that, in addition to the conventional distance and angle criteria of H bonding, the distance d(H···H) between the two neighbouring hydrogen atoms of the two water molecules should also be taken as a criterion, and the distance r(O···H) between the hydrogen atom of the H-bond donor molecule and the oxygen atom of the acceptor molecule should be restricted by a lower limit. When d(H···H) and r(O···H) are small (e.g., d(H···H) < 2.0 ? and r(O···H) < 1.62 ?), the repulsion between the two neighbouring atoms increases the total energy of the two water molecules dramatically and apparently weakens the binding of the water dimer. A statistical analysis and comparison of the numbers of the H bonds identified by using different criteria have been conducted on a Car-Parrinello ab initio molecular dynamics simulation with dispersion correction for a system of 64 water molecules at near-ambient temperature. They show that the majority of the H-bonds counted by using the conventional criteria combined with the d(H···H) criterion and the restriction of r(O···H) match what is identified by the binding energy criteria (e.g., E ≤ -10 kJ/mol), while some of them still have a binding energy that exceeds the energy criterion, indicating that the complicated quantum effects in H bonding can only be described by the three geometric parameters to a certain extent.  相似文献   

8.
The deformable stochastic boundary method developed previously for treating simple liquids without periodic boundary conditions, is extended to the ST2 model of water. The method is illustrated by a molecular dynamics simulation of a sphere containing 98 water molecules. Comparison with the results of the periodic boundary simulation by Stillinger and Rahman shows very good agreement for structural and dynamic properties.  相似文献   

9.
We have investigated the bonding of water molecules to the surfaces of ZnS nanoparticles (approximately 2-3 nm sphalerite) using temperature-programmed desorption (TPD). The activation energy for water desorption was derived as a function of the surface coverage through kinetic modeling of the experimental TPD curves. The binding energy of water equals the activation energy of desorption if it is assumed that the activation energy for adsorption is nearly zero. Molecular dynamics (MD) simulations of water adsorption on 3 and 5 nm sphalerite nanoparticles provided insights into the adsorption process and water binding at the atomic level. Water binds with the ZnS nanoparticle surface mainly via formation of Zn-O bonds. As compared with bulk ZnS crystals, ZnS nanoparticles can adsorb more water molecules per unit surface area due to the greatly increased curvature, which increases the distance between adjacent adsorbed molecules. Results from both TPD and MD show that the water binding energy increases with decreasing the water surface coverage. We attribute the increase in binding energy with decreasing surface water coverage to the increasing degree of surface under-coordination as removal of water molecules proceeds. MD also suggests that the water binding energy increases with decreasing particle size due to the further distance and hence lower interaction between adsorbed water molecules on highly curved smaller particle surfaces. Results also show that the binding energy, and thus the strength of interaction of water, is highest in isolated nanoparticles, lower in nanoparticle aggregates, and lowest in bulk crystals. Given that water binding is driven by surface energy reduction, we attribute the decreased binding energy for aggregated as compared to isolated particles to the decrease in surface energy that occurs as the result of inter-particle interactions.  相似文献   

10.
To gain a better understanding of the interaction of water and NaCl at the surface during dissolution, we have used molecular dynamics to simulate the interface with two equal-sized slabs of solid NaCl and liquid water in contact. The introduction of voids in the bulk of the salt, as well as steps or pits on the surface of the NaCl slab results in a qualitative change of system structure, as defined by radial distribution functions (RDFs). As an example, the characteristic Na-Na RDF for the system changes from regularly spaced narrow peaks (corresponding to an ordered crystalline structure), to a broad primary and smaller secondary peak (corresponding to a disordered structure). The change is observed at computationally short time scales of 100 ps, in contrast with a much longer time scale of 1 mus expected for complete mixing in the absence of defects. The void fraction (which combines both bulk and surface defects) required to trigger dissolution varies between 15%-20% at 300 K and 1 atm, and has distinct characteristics for the physical breakdown of the crystal lattice. The void fraction required decreases with temperature. Sensitivity studies show a strong dependence of the critical void fraction on the quantity and distribution of voids on the surface, with systems containing a balanced number of surface defects and a rough surface showing a maximum tendency to dissolve. There is a moderate dependence on temperature, with a 5% decrease in required void fraction with a 100 K increase in temperature, and a weak dependence on water potential model used, with the SPC, SPC/E, TIP4P, and RPOL models giving qualitatively identical results. The results were insensitive to the total quantity of water available for dissolution and the duration of the simulation.  相似文献   

11.
The development of coarse-grained (CG) models that correctly represent the important features of compounds is essential to overcome the limitations in time scale and system size currently encountered in atomistic molecular dynamics simulations. Most approaches reported in the literature model one or several molecules into a single uncharged CG bead. For water, this implicit treatment of the electrostatic interactions, however, fails to mimic important properties, e.g., the dielectric screening. Therefore, a coarse-grained model for water is proposed which treats the electrostatic interactions between clusters of water molecules explicitly. Five water molecules are embedded in a spherical CG bead consisting of two oppositely charged particles which represent a dipole. The bond connecting the two particles in a bead is unconstrained, which makes the model polarizable. Experimental and all-atom simulated data of liquid water at room temperature are used for parametrization of the model. The experimental density and the relative static dielectric permittivity were chosen as primary target properties. The model properties are compared with those obtained from experiment, from clusters of simple-point-charge water molecules of appropriate size in the liquid phase, and for other CG water models if available. The comparison shows that not all atomistic properties can be reproduced by a CG model, so properties of key importance have to be selected when coarse graining is applied. Yet, the CG model reproduces the key characteristics of liquid water while being computationally 1-2 orders of magnitude more efficient than standard fine-grained atomistic water models.  相似文献   

12.
Our group recently proposed a robust bias potential function that can be used in an efficient all-atom accelerated molecular dynamics (MD) approach to simulate the transition of high energy barriers without any advance knowledge of the potential-energy landscape. The main idea is to modify the potential-energy surface by adding a bias, or boost, potential in regions close to the local minima, such that all transitions rates are increased. By applying the accelerated MD simulation method to liquid water, we observed that this new simulation technique accelerates the molecular motion without losing its microscopic structure and equilibrium properties. Our results showed that the application of a small boost energy on the potential-energy surface significantly reduces the statistical inefficiency of the simulation while keeping all the other calculated properties unchanged. On the other hand, although aggressive acceleration of the dynamics simulation increases the self-diffusion coefficient of water molecules greatly and dramatically reduces the correlation time of the simulation, configurations representative of the true structure of liquid water are poorly sampled. Our results also showed the strength and robustness of this simulation technique, which confirm this approach as a very useful and promising tool to extend the time scale of the all-atom simulations of biological system with explicit solvent models. However, we should keep in mind that there is a compromise between the strength of the boost applied in the simulation and the reproduction of the ensemble average properties.  相似文献   

13.
Formation of NaCl nanoparticles in supercritical water is studied using molecular dynamics simulation method. We have simulated particle nucleation and growth in NaCl-H2O fluids, with salt concentration of 5.1 wt %, in the temperature and density range of 673-1073 K and 0.17-0.34 g/cm(3), respectively. The cluster size distributions, the size of critical nuclei and cluster lifetimes are reported. The size distribution of emerging clusters shows a very strong dependence on the system's density, with larger clusters forming at lower densities. Clusters consisting of approximately 14-24 ions appear critical for the thermodynamic states examined. The local structures of critical clusters are found to be amorphous. The lifetime values for clusters containing more than 20 ions are in the range of 10-50 ps. We have calculated the NaCl nucleation rates, which appear to be on the order of 10(28) cm(-3) s(-1).  相似文献   

14.
15.
We present an extensible interface between the AMBER molecular dynamics (MD) software package and electronic structure software packages for quantum mechanical (QM) and mixed QM and classical molecular mechanical (MM) MD simulations within both mechanical and electronic embedding schemes. With this interface, ab initio wave function theory and density functional theory methods, as available in the supported electronic structure software packages, become available for QM/MM MD simulations with AMBER. The interface has been written in a modular fashion that allows straight forward extensions to support additional QM software packages and can easily be ported to other MD software. Data exchange between the MD and QM software is implemented by means of files and system calls or the message passing interface standard. Based on extensive tests, default settings for the supported QM packages are provided such that energy is conserved for typical QM/MM MD simulations in the microcanonical ensemble. Results for the free energy of binding of calcium ions to aspartate in aqueous solution comparing semiempirical and density functional Hamiltonians are shown to demonstrate features of this interface. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Abeta16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50 ns time scale. Based on two 220 ns trajectories starting from disordered chains, we find that four Abeta16-22 peptides can form a three-stranded beta sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.  相似文献   

17.
18.
We present new generalized-ensemble molecular dynamics simulation algorithms, which we refer to as the multibaric-multithermal molecular dynamics. We describe three algorithms based on (1) the Nosé thermostat and the Andersen barostat, (2) the Nosé-Poincaré thermostat and the Andersen barostat, and (3) the Gaussian thermostat and the Andersen barostat. The multibaric-multithermal simulations perform random walks widely both in the potential-energy space and in the volume space. Therefore, one can calculate isobaric-isothermal ensemble averages in wide ranges of temperature and pressure from only one simulation run. We test the effectiveness of the multibaric-multithermal algorithm by applying it to a Lennard-Jones 12-6 potential system.  相似文献   

19.
A common method for the application of distance constraints in molecular simulations employing Cartesian coordinates is the SHAKE procedure for determining the Lagrange multipliers regarding the constraints. This method relies on the linearization and decoupling of the equations governing the atomic coordinate resetting corresponding to each constraint in a molecule, and is thus iterative. In the present study, we consider an alternative method, M‐SHAKE, which solves the coupled equations simultaneously by matrix inversion. The performances of the two methods are compared in simulations of the pure solvents water, dimethyl sulfoxide, and chloroform. It is concluded that M‐SHAKE is significantly faster than SHAKE when either (1) the molecules contain few distance constraints (solvent), or (2) when a high level of accuracy is required in the application of the constraints. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 501–508, 2001  相似文献   

20.
The rotational isomeric states (RIS) of glycerol at infinite dilution have been characterized in the aqueous phase via a 1 micros conventional molecular dynamics (MD) simulation, a 40 ns enhanced sampling replica exchange molecular dynamics (REMD) simulation, and a reevaluation of the experimental NMR data. The MD and REMD simulations employed the GLYCAM06/AMBER force field with explicit treatment of solvation. The shorter time scale of the REMD sampling method gave rise to RIS and theoretical scalar 3J(HH) coupling constants that were comparable to those from the much longer traditional MD simulation. The 3J(HH) coupling constants computed from the MD methods were in excellent agreement with those observed experimentally. Despite the agreement between the computed and the experimental J-values, there were variations between the rotamer populations computed directly from the MD data and those derived from the experimental NMR data. The experimentally derived populations were determined utilizing limiting J-values from an analysis of NMR data from substituted ethane molecules and may not be completely appropriate for application in more complex molecules, such as glycerol. Here, new limiting J-values have been derived via a combined MD and quantum mechanical approach and were used to decompose the experimental 3J(HH) coupling constants into population distributions for the glycerol RIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号