首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using metal–organic cages (MOCs) as preformed supermolecular building-blocks (SBBs) is a powerful strategy to design functional metal–organic frameworks (MOFs) with control over the pore architecture and connectivity. However, introducing chemical complexity into the network via this route is limited as most methodologies focus on only one type of MOC as the building-block. Herein we present the pairwise linking of MOCs as a design approach to introduce defined chemical complexity into porous materials. Our methodology exploits preferential Rh-aniline coordination and stoichiometric control to rationally link Cu4L4 and Rh4L4 MOCs into chemically complex, yet extremely well-defined crystalline solids. This strategy is expected to open up significant new possibilities to design bespoke multi-functional materials with atomistic control over the location and ordering of chemical functionalities.

A new strategy to design atomically precise multivariate metal–organic frameworks is presented. This is achieved by linking two preformed metal–organic cages via a precisely tuned Rh–aniline interaction.  相似文献   

2.
Local flexibility in a metal–organic framework is intriguing for reconstructing a microenvironment to distinguish different guest molecules by emphasizing their differences. Herein, guest-adaptive flexibility is observed in a metal–organic framework for efficiently discriminating aromatic isomers. Microcrystal electron diffraction directly reveals that the anthracene rings can rotate around the single bond with the adsorption of guest molecules. Disorder transformation of the ligand enables the preferential adsorption of ethylbenzene over other xylene isomers. Especially, a coated capillary column combining single/multi-component adsorption confirms a unique separation order of ethylbenzene > p-xylene > m-xylene > o-xylene with excellent selectivities, which has not been reported in other materials. Density functional theory calculations and the calculated Hirshfeld surface of guest molecules in the framework demonstrate that a guest-induced splint-like confinement structure makes the main contribution to such separation performance. This finding will provide a rational strategy for molecular recognition utilizing the local flexibility of metal–organic frameworks.

Local flexibility in a metal–organic framework is intriguing for reconstructing a microenvironment to distinguish different guest molecules by emphasizing their differences.  相似文献   

3.
The morphology of electrically conductive metal–organic frameworks strongly impacts their performance in applications such as energy storage and electrochemical sensing. However, identifying the appropriate conditions needed to achieve a specific nanocrystal size and shape can be a time-consuming, empirical process. Here we show how partial ligand oxidation dictates the morphology of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), a prototypical 2D conductive metal–organic framework. Using organic quinones as the chemical oxidant, we demonstrate that partial oxidation of the ligand prior to metal binding alters the nanocrystal aspect ratio by over 60-fold. Systematically varying the extent of initial ligand oxidation leads to distinct rod, block, and flake-like morphologies. These results represent an important advance in the rational control of Cu3(HHTP)2 morphology and motivate future studies into how ligand oxidation impacts the nucleation and growth of 2D conductive metal–organic frameworks.

The morphology of a copper-based 2D conductive metal–organic framework can be tuned via controlled ligand oxidation. Using quinone oxidants, we show how partial ligand oxidation prior to metal binding alters the nanocrystal aspect ratio by >60-fold.  相似文献   

4.
The guest-dependent flexibility of the pillared-layered metal–organic framework (MOF), Zn2bdc2dabco·X(guest), where guest = EtOH, DMF or benzene, has been examined by high-pressure single crystal X-ray diffraction. A pressure-induced structural phase transition is found for the EtOH- and DMF-included frameworks during compression in a hydrostatic medium of the guest species, which is dependent upon the nature and quantity of the guest in the channels. The EtOH-included material undergoes a phase transition from P4/mmm to C2/m at 0.69 GPa, which is accompanied by a change in the pore shape from square to rhombus via super-filling of the pores. The DMF-included material undergoes a guest-mediated phase transition from I4/mcm to P4/mmm at 0.33 GPa via disordering of the DMF guest. In contrast, the benzene-included framework features a structure with rhombus-shaped channels at ambient pressure and shows direct compression under hydrostatic pressure. These results demonstrate the large influence of guest molecules on the high-pressure phase behavior of flexible MOFs. Guest-mediated framework flexibility is useful for engineering MOFs with bespoke pore shapes and compressibility.

The guest-dependent flexibility of the pillared-layered metal–organic framework (MOF), Zn2bdc2dabco·X(guest), where guest = EtOH, DMF or benzene, has been examined by high-pressure single crystal X-ray diffraction.  相似文献   

5.
Metal–organic frameworks are promising materials for applications such as gas capture, separation, and storage, due to their ability to selectively adsorb small molecules. The metal–organic framework CuI-MFU-4l, which contains coordinatively unsaturated copper(i) centers, can engage in backbonding interactions with various small molecule guests, motivating the design of frameworks that engage in backbonding and other electronic interactions for highly efficient and selective adsorption. Here, we examine several gases expected to bind to the open copper(i) sites in CuI-MFU-4l via different electronic interactions, including σ-donation, π-backbonding, and formal electron transfer. We show that in situ Cu L-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy can elucidate π-backbonding by directly probing excitations to unoccupied backbonding orbitals with Cu d-character, even for gases that participate in other dominant interactions, such as ligand-to-metal σ-donation. First-principles calculations based on density functional theory and time-dependent density functional theory additionally reveal the backbonding molecular orbitals associated with these spectroscopic transitions. The energies of the transitions correlate with the energy levels of the isolated small molecule adsorbates, and the transition intensities are proportional to the binding energies of the guest molecules within CuI-MFU-4l. By elucidating the molecular and electronic structure origins of backbonding interactions between electron rich metal centers in metal–organic frameworks and small molecule guests, it is possible to develop guidelines for further molecular-level design of solid-state adsorbents for energy-efficient separations of relevance to industry.

In situ near edge X-ray absorption fine structure spectroscopy directly probes unoccupied states associated with backbonding interactions between the open metal site in a metal–organic framework and various small molecule guests.  相似文献   

6.
Spatial confinement is widely employed by nature to attain unique efficiency in controlling chemical reactions. Notable examples are enzymes, which selectively bind reactants and exquisitely regulate their conversion into products. In an attempt to mimic natural catalytic systems, supramolecular metal–organic cages capable of encapsulating guests in their cavity and of controlling/accelerating chemical reactions under confinement are attracting increasing interest. However, the complex nature of these systems, where reactants/products continuously exchange in-and-out of the host, makes it often difficult to elucidate the factors controlling the reactivity in dynamic regimes. As a case study, here we focus on a coordination cage that can encapsulate amide guests and enhance their hydrolysis by favoring their mechanical twisting towards reactive molecular configurations under confinement. We designed an advanced multiscale simulation approach that allows us to reconstruct the reactivity in such host–guest systems in dynamic regimes. In this way, we can characterize amide encapsulation/expulsion in/out of the cage cavity (thermodynamics and kinetics), coupling such host–guest dynamic equilibrium with characteristic hydrolysis reaction constants. All computed kinetic/thermodynamic data are then combined, obtaining a statistical estimation of reaction acceleration in the host–guest system that is found in optimal agreement with the available experimental trends. This shows how, to understand the key factors controlling accelerations/variations in the reaction under confinement, it is necessary to take into account all dynamic processes that occur as intimately entangled in such host–guest systems. This also provides us with a flexible computational framework, useful to build structure–dynamics–property relationships for a variety of reactive host–guest systems.

Encapsulation of guests in metal–organic cages allows control over chemical reactivity. Focusing on the hydrolysis of amides, here we show an effective molecular simulation approach to reconstruct reactivity in host–guest systems in dynamic regimes.  相似文献   

7.
Sonogashira coupling represents an indispensable tool for the preparation of organic materials that contain C(sp)–C(sp2) bonds. Improving the efficiency and generality of this methodology has long been an important research subject in materials science. Here, we show that a high-temperature ball-milling technique enables the highly efficient palladium-catalyzed Sonogashira coupling of solid aryl halides that bear large polyaromatic structures including sparingly soluble substrates and unactivated aryl chlorides. In fact, this new protocol provides various materials-oriented polyaromatic alkynes in excellent yield within short reaction times in the absence of bulk reaction solvents. Notably, we synthesized a new luminescent material via the mechanochemical Sonogashira coupling of poorly soluble Vat Red 1 in a much higher yield compared to those obtained using solution-based conditions. The utility of this method was further demonstrated by the rapid synthesis of a fluorescent metal–organic framework (MOF) precursor via two sequential mechanochemical Sonogashira cross-coupling reactions. The present study illustrates the great potential of Sonogashira coupling using ball milling for the preparation of materials-oriented alkynes and for the discovery of novel functional materials.

Using a high-temperature ball-milling technique, a practical mechanochemical protocol for the Sonogashira cross-coupling of polyaromatic halides was achieved, which provides efficient access to materials-oriented aromatic alkynes.  相似文献   

8.
A new rare earth based two-dimensional coordination network and a three-dimensional metal–organic framework (MOF) have been synthesized using bicinchoninic acid (BCA) and yttrium(iii) ions. Yttrium dimer nodes are formed in the absence of a modulator, resulting in a 2D layered coordination network (Y–BCA-2D). The presence of fluorinating agents, e.g., 2-fluorobenzoic acid (2-FBA), 2,6-difluorobenzoic acid (2,6-DFBA), and perfluorohexanoic acid (PFHxA) result in μ3-F bridged metal hexaclusters (Y6F8) that form a three-dimensional MOF (Y–BCA-3D). It was found that Y3+ can break highly stable C–F bonds in aromatic and aliphatic fluorinated compounds. Single-crystal X-ray diffraction (SC-XRD) shows the presence of fluorine in the metal cluster which was confirmed by energy dispersive X-ray spectroscopy (EDS). High resolution X-ray photoelectron spectroscopy (XPS) and 19F Nuclear Magnetic Resonance (NMR) also verify the presence of metal–fluorine bonds in the cluster. The Y–BCA-3D MOF selectively adsorbs CO2 but not N2.

The reaction of yttrium(iii) and linker makes a 2D metal–organic framework. The addition of fluorinated modulators result in fluorine extraction from modulators and makes a 3D-MOF.  相似文献   

9.
This review aims at providing an overview of the most significant applications of fluorine-containing ligands reported in the literature starting from 2001 until mid-2021. The ligands are classified according to the nature of the donor atoms involved. This review highlights both metal–ligand interactions and the structure–reactivity relationships resulting from the presence of the fluorine atom or fluorine-containing substituents on chiral catalysts.

This review provides an overview of the most significant applications of fluorine-tagged ligands, including metal–ligand interactions, structure–reactivity relationships, and transition state models, in metal-catalyzed asymmetric transformations.  相似文献   

10.
Exsolution is an ingenious strategy for the in situ construction of metal- or alloy-decorated oxides and, due to its promising energy related catalysis applications, has advanced from use in perovskites to use in spinels. Despite its great importance for designing target composites, the ability to identify whether active metal ions at octahedral or tetrahedral sites will preferentially exsolve in a spinel remains unexplored. Here, an inverse spinel NiFe2O4 (NFO) was employed as a prototype and FeNi/NFO composites were successfully constructed via exsolution. The preferential breaking of octahedral metal–oxygen bonds in the spinel oxide was directly observed using Mössbauer and X-ray absorption spectroscopy. This was further verified from the negative segregation energies calculated based on density-functional theory. One exsolved FeNi/NFO composite exhibits enhanced electrochemical activity with an overpotential of 283 mV at 10 mA cm−2 and a long stability time for the oxygen evolution reaction. This work offers a unique insight into spinel exsolution based on the preferential breaking of chemical bonds and may be an effective guide for the design of new composite catalysts where the desired metal ions are deliberately introduced to octahedral and/or tetrahedral sites.

The preferential breaking of octahedral metal–oxygen bonds is exploited to construct an exsolved FeNi/NFO composite for an efficient oxygen evolution reaction.  相似文献   

11.
Recently, deep neural network (DNN)-based drug–target interaction (DTI) models were highlighted for their high accuracy with affordable computational costs. Yet, the models'' insufficient generalization remains a challenging problem in the practice of in silico drug discovery. We propose two key strategies to enhance generalization in the DTI model. The first is to predict the atom–atom pairwise interactions via physics-informed equations parameterized with neural networks and provides the total binding affinity of a protein–ligand complex as their sum. We further improved the model generalization by augmenting a broader range of binding poses and ligands to training data. We validated our model, PIGNet, in the comparative assessment of scoring functions (CASF) 2016, demonstrating the outperforming docking and screening powers than previous methods. Our physics-informing strategy also enables the interpretation of predicted affinities by visualizing the contribution of ligand substructures, providing insights for further ligand optimization.

PIGNet, a deep neural network-based drug–target interaction model guided by physics and extensive data augmentation, shows significantly improved generalization ability and model performance.  相似文献   

12.
Two-dimensional (2D) metal–organic framework (MOF) based heterostructures will be greatly advantageous to enhance catalytic performance because they increase the contact surface and charge transfer. Herein, a novel 2D heterostructure named CeO2@NiFe-MOFs, in which monolayer NiFe-MOFs is coordinated with ceria (CeO2) to improve catalytic and stability performance, is successfully constructed by the strategy of in situ growth on the surface of ultrathin CeO2 nanosheets being functionalized with monolayer carboxylic acid groups. The 2D heterostructure possesses a sandwich structure, where monolayer NiFe-MOFs are coordinated to both the top and bottom surface of CeO2 nanosheets via joining carboxylic acid groups. In particular, CeO2 with robust coordination plays a significant role in the anchoring of carboxylic acid groups and binding strength of heterostructures. The 2D CeO2@NiFe-MOF heterostructure with a joint effect of metal–ligand coordination not only presents good structural stability but also significantly enhances the oxygen evolution reaction (OER) efficiencies in comparison to bare NiFe-MOFs, achieving a current density of 20 mA cm−2 at a low overpotential of 248 mV as well as durability for at least 40 h. Meanwhile, the electronics, optics, band gap energy and local strains of CeO2 decorated with 2D NiFe-MOFs are different to the properties of bare CeO2. Our study on the construction of an ultrathin CeO2 surface-coordinated and confined MOF layer may pave a new way for novel 2D MOF composites/heterostructures or multi-functional 2D CeO2 materials to be used in energy conversion or other fields.

A synthetic strategy to prepare 2D heterostructures from ultrathin CeO2 surface-coordinated metal–organic framework was proposed, proving multiple effects of metal-coordinated interactions in 2D heterostructures.  相似文献   

13.
Stimuli-responsive metal–organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a stimuli-responsive MOF, 1·[CuCl], that shows temperature dependent switching from a rigid to flexible phase. This conversion is associated with a dramatic reversible change in the gas adsorption properties, from Type-I to S-shaped isotherms. The structural transition is facilitated by a novel mechanism that involves both a change in coordination number (3 to 2) and geometry (trigonal planar to linear) of the post-synthetically added Cu(i) ion. This process serves to ‘unlock’ the framework rigidity imposed by metal chelation of the bis-pyrazolyl groups and realises the intrinsic flexibility of the organic link.

Stimuli-responsive metal–organic frameworks (MOFs) exhibit dynamic structural changes upon exposure to external stimuli. Here the coordination geometry of a post-synthetically added metal ion drastically changes the adsorption properties.  相似文献   

14.
The efficient transformation of nitroaromatics to functional molecules such as N-heterocycles has been an attractive and significant topic in synthesis chemistry. Herein, a photoexcited nitro-induced strategy for switchable annulations of 2-nitroarylethanols was developed to construct N-heterocycles including indoles, N-hydroxyl oxindoles and N–H oxindoles. The metal- and photocatalyst-free reaction proceeds through intramolecular redox C–N coupling of branched hydroxyalkyl and nitro units, which is initiated by a double hydrogen atom abstraction (d-HAA) process. The key to the switchable reaction outcomes is the mediation of a diboron reagent by its favorable oxy-transfer reactivity to in situ generated nitroso species. The utility of this protocol was well demonstrated by broad substrate scope, excellent yields, functional group tolerance and wide applications. Finally, detailed mechanistic studies were performed, and kinetic isotope effect (KIE) experiments indicate that the homolysis of the C–H bond is involved in the rate-determining step.

A cyclization strategy of 2-nitroarylethanols under blue-light irradiation was developed, which is triggered by a photoexcited nitro-induced double hydrogen atom abstraction (d-HAA) process, delivering indoles, N–OH oxindoles and N–H oxindoles.  相似文献   

15.
We present here a copper-catalyzed electrophilic ortho C–H amination of protected naphthylamines with N-(benzoyloxy)amines, cyclization with the pendant amide, and carbon to nitrogen 1,2-directing group migration cascade to access N,N-disubstituted 2-benzimidazolinones. Remarkably, this highly atom-economic tandem reaction proceeds through a C–H and C–C bond cleavage and three new C–N bond formations in a single operation. Intriguingly, the reaction cascade was altered by the subtle tuning of the directing group from picolinamide to thiopicolinamide furnishing 2-heteroaryl-imidazoles via the extrusion of hydrogen sulfide. This strategy provided a series of benzimidazolones and benzimidazoles in moderate to high yields with low catalyst loading (66 substrates with yields up to 99%). From the control experiments, it was observed that after the C–H amination an incipient tetrahedral oxyanion or thiolate intermediate is formed via an intramolecular attack of the primary amine to the amide/thioamide carbonyl. It undergoes either a 1,2-pyridyl shift with the retention of the carbonyl moiety or H2S elimination for scaffold diversification. Remarkably, inspite of a positive influence of copper in the reaction outcome, from our preliminary investigations, the benzimidazolone product was obtained in good to moderate yields in two steps under metal-free conditions. The N-pyridyl moiety of the benzimidazolone was removed for further manipulation of the free NH group.

A novel directing group switch strategy is explored in a copper-catalyzed divergent synthesis of benzimidazolone via electrophilic C–H amination/cyclization/1,2-C → N directing group migration cascade and benzimidazole through the extrusion of H2S.  相似文献   

16.
Pore alignment and linker orientation influence diffusion and guest molecule interactions in metal–organic frameworks (MOFs) and play a pivotal role for successful utilization of MOFs. The crystallographic orientation and the degree of orientation of MOF films are generally determined using X-ray diffraction. However, diffraction methods reach their limit when it comes to very thin films, identification of chemical connectivity or the orientation of organic functional groups in MOFs. Cu-based 2D MOF and 3D MOF films prepared via layer-by-layer method and from aligned Cu(OH)2 substrates were studied with polarization-dependent Fourier-transform infrared (FTIR) spectroscopy in transmission and attenuated total reflection configuration. Thereby, the degrees for in-plane and out-of-plane orientation, the aromatic linker orientation and the initial alignment during layer-by-layer MOF growth, which is impossible to investigate by laboratory XRD equipment, was determined. Experimental IR spectra correlate with theoretical explanations, paving the way to expand the principle of IR crystallography to oriented, organic–inorganic hybrid films beyond MOFs.

Polarization-dependent infrared spectroscopy of oriented metal organic framework films fills the information gap left by diffraction methods and gives access to the orientation of the aromatic linker and initial orientation of ultra-thin films.  相似文献   

17.
PtCu single-atom alloys (SAAs) open an extensive prospect for heterogeneous catalysis. However, as the host of SAAs, Cu suffers from severe sintering at elevated temperature, resulting in poor stability of catalysts. This paper describes the suppression of the agglomeration of Cu nanoparticles under high temperature conditions using copper phyllosilicate (CuSiO3) as the support of PtCu SAAs. Based on quasi in situ XPS, in situ CO-DRIFTS, in situ Raman spectroscopy and in situ XRD, we demonstrated that the interfacial Cu+–O–Si formed upon reduction at 680 °C serves as the adhesive between Cu nanoparticles and the silicon dioxide matrix, strengthening the metal–support interaction. Consequently, the resistance to sintering of PtCu SAAs was improved, leading to high catalytic stability during propane dehydrogenation without sacrificing conversion and selectivity. The optimized PtCu SAA catalyst achieved more than 42% propane conversion and 93% propylene selectivity at 580 °C for at least 30 hours. It paves a way for the design and development of highly active supported single-atom alloy catalysts with excellent thermal stability.

This paper describes PtCu single-atom alloys supported on copper phyllosilicate via Cu+–O–Si. The catalyst exhibits sintering resistance in propane dehydrogenation reaction without sacrificing activity and selectivity.  相似文献   

18.
Herein, a readily available disilane Me3SiSiMe2(OnBu) has been developed for the synthesis of diverse silacycles via Brook- and retro-Brook-type rearrangement. This protocol enables the incorporation of a silylene into different starting materials, including acrylamides, alkene-tethered 2-(2-iodophenyl)-1H-indoles, and 2-iodobiaryls, via the cleavage of Si–Si, Si–C, and Si–O bonds, leading to the formation of spirobenzosiloles, fused benzosiloles, and π-conjugated dibenzosiloles in moderate to good yields. Preliminary mechanistic studies indicate that this transformation is realized by successive palladium-catalyzed bis-silylation and Brook- and retro-Brook-type rearrangement of silane-tethered silanols.

A readily available disilane Me3SiSiMe2(OnBu) as a silylene source has been developed for the synthesis of diverse silacycles via Brook- and retro-Brook-type rearrangement.  相似文献   

19.
A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report. A series of non-electron-deficient olefins underwent the MBH reaction smoothly via a novel photoredox-quinuclidine dual catalysis. The in situ formed key β-quinuclidinium radical intermediates, derived from the addition of olefins with quinuclidinium radical cations, are used to enable the MBH reaction of non-electron-deficient olefins. On the basis of previous reports, a plausible mechanism is suggested. Mechanistic studies, such as radical probe experiments and density functional theory (DFT) calculations, were also conducted to support our proposed reaction pathways.

A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report.  相似文献   

20.
Low-temperature and selective reductive amination of carbonyl compounds is a highly promising approach to access primary amines. However, it remains a great challenge to conduct this attractive route efficiently over earth-abundant metal-based catalysts. Herein, we designed several Co-based catalysts (denoted as Co@C–N(x), where x represents the pyrolysis temperature) by the pyrolysis of the metal–organic framework ZIF-67 at different temperatures. Very interestingly, the prepared Co@C–N(800) could efficiently catalyze the reductive amination of various aldehydes/ketones to synthesize the corresponding primary amines with high yields at 35 °C. Besides non-noble metal and mild temperature, the other unique advantage of the catalyst was that the substrates with different reduction-sensitive groups could be converted into primary amines selectively because the Co-based catalyst was not active for these groups at low temperature. Systematic analysis revealed that the catalyst was composed of graphene encapsulated Co nanoparticles and atomically dispersed Co–Nx sites. The Co particles promoted the hydrogenation step, while the Co–Nx sites acted as acidic sites to activate the intermediate (Schiff base). The synergistic effect of metallic Co particles and Co–Nx sites is crucial for the excellent performance of the catalyst Co@C–N(800). To the best of our knowledge, this is the first study on efficient synthesis of primary amines via reductive amination of carbonyl compounds over earth-abundant metal-based catalysts at low temperature (35 °C).

An earth-abundant Co-based catalyst, Co@C–N(800), could efficiently catalyze the reductive amination of carbonyl compounds into primary amines at 35 °C owing to the synergistic effect of Co nanoparticles and atomically dispersed Co–Nx sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号