首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《Chemical physics letters》1986,125(2):165-169
The lowest six vibrational hot bands of CF+ have been measured in a helium/C2F6 discharge by velocity modulation laser spectroscopy. A total of 56 transitions has been fitted to Dunham expansion for v = 0–7, yielding the parameters: ωe = 1792.6654(18) cm−1Be = 1.7204176(75) cm−1, Y20, = −13.22968(54) cm−1, and D0 = 62086(30) cm−1. The rotational temperature of CF+ in the plasma is near 650 K and the vibrational temperature is approximately 5200 K.  相似文献   

2.
《Chemical physics letters》1987,135(6):534-538
The electronic origin of the à A″ ← X̃ A′ transition of trifluoronitrosomethane (CF3NO) has been reassigned to the very weak feature near 717.9 nm in the fluorescence excitation spectrum of the jet-cooled molecule. The prominent torsional progression has been reinpreted and the height of the threefold torsional barier in the Ã( n,π* ) state has been revised to 601.5 ± 10 cm−1.  相似文献   

3.
The far i.r. (400-50 cm−1) spectra of gaseous and solid furfural (2-furancarboxaldehyde), c-C4H3O (CHO), have been recorded. Additionally, the Raman (3500-20 cm−1) spectra of the gas and liquid have been obtained at variable temperatures and the spectrum of the solid at 25 K. These data have been interpreted on the basis that the molecule exists in two different conformations in the fluid states and that the conformation which has the two oxygen atoms oriented in a trans configuration, OO-trans, is most stable (ΔH ⩽ 1 kcal/mol) in the gas; however, the conformation which has the two oxygen atoms oriented cis, OO-cis, is preferred in the liquid (ΔH = 1.07 ± 0.03 kcal/mol) and is the only rotamer present in the spectra of the solid. The asymmetric torsional fundamental for the OO-trans rotamer has been observed at 146.25 cm−1 in the far i.r. spectrum of the vapor and has five accompanying “hot bands”. The corresponding fundamental for the OO-cis rotamer has been observed at 127.86 cm−1 along with a “hot band” which occurs at 127.46 cm−1. From these data a cosine-based potential function governing internal rotation of the CHO top has been determined and the potential coefficients have values of V1 = 173 ± 2, V2 = 3112 ± 20, V3 = 113 ± 2 and V4 = −198 ± 6 cm−1. This potential is consistent with an enthalpy difference between the more stable OO-trans and high energy OO-cis conformers being 286 ± 24 cm−1 (818 ± 67 cal/mol) and a trans to cis barrier height of 3255 ± 20 cm−1 (9.31 ± 0.06 kcal/mol). These results are compared to the corresponding quantities obtained previously from microwave spectroscopy and theoretical methods.  相似文献   

4.
Rate constants have been determined for the reactions of Cl atoms with the halogenated ethers CF3CH2OCHF2, CF3CHClOCHF2, and CF3CH2OCClF2 using a relative‐rate technique. Chlorine atoms were generated by continuous photolysis of Cl2 in a mixture containing the ether and CD4. Changes in the concentrations of these two species were measured via changes in their infrared absorption spectra observed with a Fourier transform infrared (FTIR) spectrometer. Relative‐rate constants were converted to absolute values using the previously measured rate constants for the reaction, Cl + CD4 → DCl + CD3. Experiments were carried out at 295, 323, and 363 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature:Cl + CF3CH2OCHF2: k = (5.15 ± 0.7) × 10−12 exp(−1830 ± 410 K/T) cm3 molecule−1 s−1 Cl + CF3CHClOCHF2: k = (1.6 ± 0.2) × 10−11 exp(−2450 ± 250 K/T) cm3 molecule−1 s−1 Cl + CF3CH2OCClF2: k = (9.6 ± 0.4) × 10−12 exp(−2390 ± 190 K/T) cm3 molecule−1 s−1 The results are compared with those obtained previously for the reactions of Cl atoms with other halogenated methyl ethyl ethers. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 165–172, 2001  相似文献   

5.
The infrared spectra of 1,1-dimethylhydrazine, (CH3)2NNH2, and two isotopomers, (CD3)2NNH2 and (CH3)2NND2, have been recorded in the region between 600 and 100 cm−1. Very rich and complex spectra were obtained and analysis of the data has been carried out. The interpretation of the spectra arising from the two methyl torsional modes of the −d0 compound was carried out using a semi-rigid model, and the resulting potential function obtained is V30 = 1685 ± 12 cm−1 (4.82 ± 0.04 kcal mol−1); V03 = 1827 ± 16 cm−1 (5.22 ± 0.05 kcal mol−1); V60 = −92±5cm−1 (−0.26 ± 0.02 kcal mol−1); V06 = −41 ± 6cm−1 (−0.12 ± 0.02 kcal mol−1) and V33 = −51 ± 5 cm−1 (−0.15 ± 0.01 kcal mol−1). Ab initio gradient calculations were carried out employing the 3–21G and 6–31G* basis sets, as well as the 6–31G* basis set with electron correlation at the MP2 level. The structural parameters, conformational stability, and three-fold barriers to internal rotation have been determined and the gauche conformer is calculated to be more stable than the trans form by 783 cm−1 (2.24 kcal mol−1) with the MP2/6–31G* basis set. These calculations were also used to re-evaluate the previously reported assignment of the fundamental modes, and to obtain a potential function for the asymmetric torsion. All of these results are discussed and compared with corresponding quantities for some similar compounds.  相似文献   

6.
The reaction of CF3 with NO2 was studied at 296 ± 2K using two different absolute techniques. Absolute rate constants of (1.6 ± 0.3) × 10−11 and (2.1 −0.3+07) × 10−11 cm3 molecule−1 s−1 were derived by IR fluorescence and UV absorption spectroscopy, respectively. The reaction proceeds via two reaction channels: CF3 + NO2 → CF2O + FNO, (70 ± 12)% and CF3 + NO2 → CF3O + NO, (30 ± 12)%. An upper limit of 11% for formation of other reaction products was determined. The overall rate constant was within the uncertainty independent of total pressure between 0.4 to 760 torr. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
《Chemical physics letters》1987,141(5):423-427
Tunable diode laser transient detection of CF2 C2F4, and HCl following infrared multiphoton dissociation (IRMPD) of CF2HCl has been achieved. Quantification of the HCl and C2F4 leads to the calculation of an infrared absorption linestrength and the ν1 bandstrength for CF2 (X̃1A1). In addition, the rate coefficient for recombination of CF2 was found to be (1.4± 0.4) × 1010 cm3 mol−1 s−1.  相似文献   

8.
Br-atom atomic resonance absorption spectrometry (ARAS) has been developed and applied to measure thermal decomposition rate constants for CF3Br (+ Kr)→CF3+Br (+ Kr) over the temperature range, 1222–1624 K. The Br-atom curve-of-growth (145<λ<163 nm) was determined using this reaction. For [Br]≤1×1012 molecules cm−3, absorbance, (ABS)=1.410×10−13 [Br], yielding σ=1.419×10−14 cm2. The curve-of-growth was then used to convert (ABS) to Br-atom profiles which were then analyzed to give measured rate constants. These can be expressed in second-order by k1=8.147×10−9 exp(−24488 K/T) cm3 molecule−1 s−1 (±33%, 1222≤T≤1624 K). A unimolecular theoretical approach was used to rationalize the data. Theory indicates that the dissociation rates are closer to second- than to first-order, i.e., the magnitudes are 30–53% of the low-pressure-limit rate constants over 1222–1624 K and 123–757 torr. With the known, E0=ΔH00=70.1 kcal mole−1, the optimized theoretical fit to the ARAS data requires 〈ΔEdown=550 cm−1. These conclusions are consistent with recently published data and theory from Kiefer and Sathyanarayana. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 859–867, 1998  相似文献   

9.
The ultraviolet absorption spectrum of CF3CFClO2 and the kinetics of the self reactions of CF3CFCl and CF3CFClO2 radicals and the reactions of CF3CFClO2 with NO and NO2 have been studied in the gas phase at 295 K by pulse radiolysis/transient UV absorption spectroscopy. The UV absorption cross section of CF3CFCl radicals was measured to be (1.78 ± 0.22) × 10?18 cm2 molecule?1 at 220 nm. The UV spectrum of CF3CFClO2 radicals was quantified from 220 nm to 290 nm. The absorption cross section at 250 nm was determined to be (1.67 ± 0.21) × 10?18 cm2 molecule?1. The rate constants for the self reactions of CF3CFCl and CF3CFClO2 radicals were (2.6 ± 0.4) × 10?12 cm3 molecule?1 s?1 and (2.6 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. The reactivity of CF3CFClO2 radicals towards NO and NO2 was determined to (1.5 ± 0.6) × 10?11 cm3 molecule?1 s?1 and (5.9 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. Finally, the rate constant for the reaction of F atoms with CF3CFClH was determined to (8 ± 2) × 10?13 cm3 molecule?1 s?1. Results are discussed in the context of the atmospheric chemistry of HCFC-124, CF3CFClH. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The kinetics of the reactions O(3P) + CF2CCl2 and O(3P) + CF3CFCF2 were studied at room temperature in a discharge flow tube system. The overall rate constants based on the measured afterglow reactions were (3.10 ± 0.40) × 10−13 and (3.00 ± 0.60) × 10−14 cm3 molecule−1 s−1, respectively. The experiments were carried out under pseudo‐first‐order conditions with [O(3P)]0 ≪ [alkene]0. These results are compared with previous relative measurements using different experimental techniques. The effect of substituent atoms or groups on the overall rate constants is analyzed in comparison with other alkenes in the literature. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 867–872, 1999  相似文献   

11.
The far i.r. spectrum of gaseous n-butane obtained at 0.06 cm−1 resolution is reported between 80 and 230 cm−1. Several transitions for the asymmetric torsion of the trans conformer have been identified. Utilizing these data along with the previously reported asymmetric torsional transitions of the gauche conformer from Raman spectroscopic data, the potential function for the conformational change has been obtained. The determined potential parameters were found to be: V1 = 181, V2 = 148, V3 = 1154 and V6 = −33 cm−1. The s-trans to gauche, gauche to gauche, and gauche to s-trans barriers in cm−1 were found to be: 1315 (3.76 kcal/mol), 1090 (3.12 kcal/mol) and 1070 (3.06 kcal/mol), respectively. The potential functions obtained from these spectroscopic data are consistent with the trans to gauche energy difference, but not with the high trans/cis potential barrier suggested by recent ab initio calculations.  相似文献   

12.
The far i.r. spectra of gaseous methacrolein (2-methylpropenal), CH2C(CH3)CHO and methacrolein-d1 (2-methylpropenal-1-d1) have been recorded in the region 350-50 cm−1 at a resolution of 0.10 cm−1. The fundamental asymmetric torsions of the d0 and d1 compounds for the more stable s-trans conformer have been observed at 169.82 and 158.83 cm−1, respectively, with each band having at least three additional “hot bands” associated with it. The corresponding fundamentals for the s-cis conformers have been observed at 163.74 and 151.26 cm−1 for the d0 and d1 compounds, respectively, with one well defined “hot band” in each case. From these data the asymmetric torsional potential coefficients have been determined to be: V1 = 1148 ± 27; V2 = 3421 ± 232; V3 = −89 ± 15; and V4 = −127 ± 36 cm−1. The s-trans to s-cis barrier was calculated to be 3950 ± 42 cm−1 with the s-trans being more stable than the s-cis conformer by 1057 ± 42 cm−1 (3.02 ± 0.12 kcal/mol). The barrier to internal rotation of the methyl group for the s-trans conformer is 444 ± 3 cm−1 (1.27 ± 0.01 kcal/mol) whereas the corresponding barrier for the s-cis conformer is 441 ± 2 cm−1 (1.26 ± 0.01 kcal/mol). The fact that both the methyl and asymmetric torsion shift with the 1-d1 substitution indicates that these two tops are kinetically coupled. The presence of the second conformer was confirmed by a study of the i.r. (3500-50 cm−1) and Raman (3200-10 cm−1) spectra of gaseous and solid methacrolein. From these data, a reassignment of some of the fundamentals was necessary. The microwave spectrum of methacrolein-d1 was recorded from 19.0 to 39.0 GHz and the a-type R-branches assigned. Utilizing the rotational constants for the d0 and d1 molecules, some structural information has been obtained for the heavy atom parameters. These data are compared to the corresponding quantities from ab initio calculations at the 6-31G* level. All of these results for methacrolein are compared to the corresponding quantities of acrolein.  相似文献   

13.
The rate constants for the reactions of OH radicals with CH3OCF2CF3, CH3OCF2CF2CF3, and CH3OCF(CF3)2 have been measured over the temperature range 250–430 K. Kinetic measurements have been carried out using the flash photolysis, laser photolysis, and discharge flow methods combined respectively with the laser induced fluorescence technique. The influence of impurities in the samples was investigated by using gas‐chromatography. The following Arrhenius expressions were determined: k(CH3OCF2CF3) = (1.90) × 10−12 exp[−(1510 ± 120)/T], k(CH3OCF2CF2CF3) = (2.06) × 10−12 exp[−(1540 ± 80)/T], and k(CH3OCF(CF3)2) = (1.94) × 10−12 exp[−(1450 ± 70)/T] cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 846–853, 1999  相似文献   

14.
The far-IR spectrum from 375 to 30 cm−1 of gaseous 3-chloro-2-methylpropene, CH2=C(CH3)CH2Cl, has been recorded at a resolution of 0.10 cm−1. The fundamental asymmetric torsional mode for the gauche conformer is observed at 84.3 cm−1 with three excited states falling to lower frequency. For the higher energy s-cis conformer, where the chlorine atom eclipses the double bond, the asymmetric torsion is observed at 81.3 cm−1 with two excited states falling to lower frequency. Utilizing the s-cis and gauche torsional frequencies, the gauche dihedral angle and the enthalpy difference between conformers, the potential function governing the interconversion of the rotamers has been calculated. The determined potential function coefficients are (in reciprocal centimeters): V1=189±12, V2=−358±11, V3=886±2 and V4=−12±2 with an enthalpy difference between the more stable gauche and s-cis conformers of 150 ±25 cm−1 (430 ± 71 cal mol−1). This function gives values of 661 cm−1 (1.89 kcal mol−1), 1226 cm−1 (3.51 kcal mol−1) and 812 cm−1 (2.32 kcal mol−1), for the s-cis to gauche, gauche to gauche, and gauche to s-cis barriers, respectively. From the methyl torsional frequency of 170 cm−1 for the gauche conformer, the threefold barrier of 678 cm−1 (1.94 kcal mol−1) has been calculated. The asymmetric potential function, conformational energy difference and optimized geometries of both conformers have also been obtained from ab initio calculations with both the 3–21G* and 6–31G* basis sets. A normal-coordinate analysis has also been performed with a force field determined from the 3–21G* basis set. These data are compared with the corresponding data for some similar molecules.  相似文献   

15.
Using a relative rate technique the reactions of chlorine and fluorine atoms with CF3CHO have been determined to proceed with rate constants of (1.8 ± 0.4) × 10−12 and (2.7 ± 0.1)×10−11 cm3 molecule−1 s−1, respectively. Experiments were performed at 295 ± 2 K and 700 torr total pressure of nitrogen. The results are discussed with respect to the design and interpretation of laboratory studies of the atmospheric chemistry of CFC replacements. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Abstract

Carbonyl compounds react with CBr2F2 in the presence of phosphanes, RP (R = Ph, NR;), and metals (M = Zn, Cd, Pb) forming geminal difluoroolefins (eq. 1)1.

R′CHO + CBr2F2 + R3P + M → R′CH=CF2 + MBr2 + R3PO (1)

Without any doubt this reaction has to occur via the intermediate formation of difluoromethylene phosphoranes, which then undergo the Wittig reaction with carbonyl compounds (eq. 2). R3P=CF2 + R′CHO → R3PO + R′CH=CF2 (2).  相似文献   

17.
CF3O2CF3 was photolyzed at 254 nm in the presence of CO in 760 torr N2 or air at 296 K in a static reactor. In N2, the products CF3OC(O)C(O)OCF3 and CF3OC(O)O2C(O)OCF3 were detected by FTIR spectroscopy. In air, the only observed products were CF2O and CO2 and a chain process, initiated by CF3O, was invoked for the conversion of CO to CO2. From both product studies, a mechanism for the CF3O initiated oxidation of CO was derived, involving the addition reaction CF3O2 + CO → CF3OC(O). The rate constant for the reaction CF3O + CO at 296 K at a total pressure of 760 torr air was determined to be k(CF3O + CO) = (5.0 ± 0.9) × 10−14 cm3 molecule−1 s−1. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
The [Ag(CF3CO2)(2-Me-Pyz)] complex (where 2-Me-Pyz is 2-methylpyrazine) was synthesized and its structure was determined. The crystals are monoclinic, space group P21/n, a = 12.440(2) Å, b = 2.605(3) Å, c = 12.646(3) Å, β = 95.95(3)°, V = 1972.3(7) Å3, ρ = 2.122 g/cm3, Z = 8. The structure consists of the polymer zigzag chains of [Ag(C5H6N2)] ? united into a three-dimensional framework through (CF3CO2)? anions.  相似文献   

19.
《Chemical physics letters》1987,139(2):159-164
A three-dimensional fit of ab initio MRD CI potential data has been made for the lowest two electronic states of the HNC1 molecule (X̃ 2A″ and à 2A'), and the corresponding vibrational frequencies and rotational energies have been computed using the non-rigid bender Hamiltonian. For the ground state the vibrational frequencies obtained are ν1 = 2942 cm−1, ν2 = 1232 cm−1, and ν3 = 549 cm−1, while the corresponding values for the first excited state are 3524,947 and 836 cm−1 respectively. We calculate Tc2A') 16200 cm−1, To2A') = 16400 cm−1, and the Franck-Condon maximum, Ã(0,3,1)-X̃(0,0.0), is calculate at 19200 cm−1(5200 Å).  相似文献   

20.
The kinetics of the gas-phase reaction of Cl atoms with CF3I have been studied relative to the reaction of Cl atoms with CH4 over the temperature range 271–363 K. Using k(Cl + CH4) = 9.6 × 10?12 exp(?2680/RT) cm3 molecule?1 s?1, we derive k(Cl + CF3I) = 6.25 × 10?11 exp(?2970/RT) in which Ea has units of cal mol?1. CF3 radicals are produced from the reaction of Cl with CF3I in a yield which was indistinguishable from 100%. Other relative rate constant ratios measured at 296 K during these experiments were k(Cl + C2F5I)/k(Cl + CF3I) = 11.0 ± 0.6 and k(Cl + C2F5I)/k(Cl + C2H5Cl) = 0.49 ± 0.02. The reaction of CF3 radicals with Cl2 was studied relative to that with O2 at pressures from 4 to 700 torr of N2 diluent. By using the published absolute rate constants for k(CF3 + O2) at 1–10 torr to calibrate the pressure dependence of these relative rate constants, values of the low- and high-pressure limiting rate constants have been determined at 296 K using a Troe expression: k0(CF3 + O2) = (4.8 ± 1.2) × 10?29 cm6 molecule?2 s?1; k(CF3 + O2) = (3.95 ± 0.25) × 10?12 cm3 molecule?1 s?1; Fc = 0.46. The value of the rate constant k(CF3 + Cl2) was determined to be (3.5 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 296 K. The reaction of Cl atoms with CF3I is a convenient way to prepare CF3 radicals for laboratory study. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号