首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The far-IR spectrum from 375 to 30 cm−1 of gaseous 3-chloro-2-methylpropene, CH2=C(CH3)CH2Cl, has been recorded at a resolution of 0.10 cm−1. The fundamental asymmetric torsional mode for the gauche conformer is observed at 84.3 cm−1 with three excited states falling to lower frequency. For the higher energy s-cis conformer, where the chlorine atom eclipses the double bond, the asymmetric torsion is observed at 81.3 cm−1 with two excited states falling to lower frequency. Utilizing the s-cis and gauche torsional frequencies, the gauche dihedral angle and the enthalpy difference between conformers, the potential function governing the interconversion of the rotamers has been calculated. The determined potential function coefficients are (in reciprocal centimeters): V1=189±12, V2=−358±11, V3=886±2 and V4=−12±2 with an enthalpy difference between the more stable gauche and s-cis conformers of 150 ±25 cm−1 (430 ± 71 cal mol−1). This function gives values of 661 cm−1 (1.89 kcal mol−1), 1226 cm−1 (3.51 kcal mol−1) and 812 cm−1 (2.32 kcal mol−1), for the s-cis to gauche, gauche to gauche, and gauche to s-cis barriers, respectively. From the methyl torsional frequency of 170 cm−1 for the gauche conformer, the threefold barrier of 678 cm−1 (1.94 kcal mol−1) has been calculated. The asymmetric potential function, conformational energy difference and optimized geometries of both conformers have also been obtained from ab initio calculations with both the 3–21G* and 6–31G* basis sets. A normal-coordinate analysis has also been performed with a force field determined from the 3–21G* basis set. These data are compared with the corresponding data for some similar molecules.  相似文献   

2.
Although graphene fiber-based supercapacitors are promising for wearable electronic devices, the low energy density of electrodes and poor cold resistance of aqueous electrolytes limit their wide application in cold environments. Herein, porous nitrogen/sulfur dual-doped graphene fibers (NS-GFs) are synthesized by hydrothermal self-assembly followed by thermal annealing, exhibiting an excellent capacitive performance of 401 F cm−3 at 400 mA cm−3 because of the synergistic effect of heteroatom dual-doping. The assembled symmetric all-solid-state supercapacitor with polyvinyl alcohol/H2SO4/graphene oxide gel electrolyte exhibits a high capacitance of 221 F cm−3 and a high energy density of 7.7 mWh cm−3 at 80 mA cm−3. Interestingly, solar–thermal energy conversion of the electrolyte with 0.1 wt % graphene oxide extends the operating temperature range of the supercapacitor to 0 °C. Furthermore, the photocatalysis effect of the dual-doped heteroatoms increases the capacitance of NS-GFs. At an ambient temperature of 0 °C, the capacitance increases from 0 to 182 F cm−3 under 1 sun irradiation because of the excellent solar light absorption and efficient solar–thermal energy conversion of graphene oxide, preventing the aqueous electrolyte from freezing. The flexible supercapacitor exhibits a long cycle life, good bending resistance, reliable scalability, and ability to power visual electronics, showing great potential for outdoor electronics in cold environments.  相似文献   

3.
The absorption spectrum of 16O3 has been recorded between 6030 and 6130 cm−1 by Fourier Transform Spectroscopy (GSMA, Reims) and cw-cavity ringdown spectroscopy (LSP, Grenoble). The two new bands 3ν1+3ν3 and 2ν2+5ν3 centered at 6063.923 and 6124.304 cm−1, respectively are observed and analyzed. Rovibrational transitions with J and Ka values up to 40 and 10, respectively, could be assigned. The rovibrational fitting of the observed energy levels shows that some rotational levels of the (303) and (025) bright states are perturbed by interaction with the (232), (510) and (124) dark states. The observed energy levels could be reproduced with a rms deviation of 5×10−3 cm−1 using a global analysis based on an effective Hamiltonian including the five interacting states. The energy values of the three dark vibrational states provided by the fit are found in good agreement with theoretical predictions.The parameters of the resulting effective Hamiltonian and of the transition moment operator retrieved from the measured absolute line intensities allowed calculating a complete line list of 2035 transitions, available as Supplementary Material. The integrated band strengths are estimated to be 1.22×10−24 and 3.15×10−24 cm−1/(mol cm−2) at 296 K for the 3ν1+3ν3 and 2ν2+5ν3 bands, respectively. A realistic error for these band strengths is 15% (see text).  相似文献   

4.
《Chemical physics letters》1986,132(2):103-107
The torsional data for CF3NO have been rein vest igated. A model with a single degree of freedom and three adjustable parameters is sufficient to fit data to v = 8 in the electronic ground state. For CF3NO we obtain Fo = 1.9822(42) cm−1, V3 = 238.4(1.6) cm−1 and V6 = −5.8(1.6) cm−1 or Fo = 1.9894(66) cm−1,F3= −0.194(55) cm−1 and V3 = 239.3(1.9) cm−1. A similar treatment for CF3CHO gives Fo = 1.97(14) cm−1, V3 = 305(25) cm−1 and V6 = −8.7(1.2) cm−1. A need for a re-examination of the torsional fundamental is indicated for CF3CHO. These studies support the general conclusion that for a heavy internal top the internal rotation constant, Fo, required to fit a range of torsional splittings is different from that calculated from structural considerations alone. The difference indicates a large change in F with torsional averaging.  相似文献   

5.
To endow all-solid-state asymmetric supercapacitors with high energy density, cycling stability, and flexibility, we design a binder-free supercapacitor electrode by in situ growth of well-distributed broccoli-like Ni0.75Mn0.25O/C solid solution arrays on a flexible and three-dimensional Ni current collector (3D-Ni). The electrode consists of a bottom layer of compressed but still porous Ni foam with excellent flexibility and high electrical conductivity, an intermediate layer of interconnected Ni nanoparticles providing a large specific surface area for loading of active substances, and a top layer of vertically aligned mesoporous nanosheets of a Ni0.75Mn0.25O/C solid solution. The resultant 3D-Ni/Ni0.75Mn0.25O/C cathode exhibits a specific capacitance of 1657.6 mF cm−2 at 1 mA cm−2 and shows no degradation of the capacitance after 10 000 cycles at 3 mA cm−2. The assembled 3D-Ni/Ni0.75Mn0.25O/C//activated carbon asymmetric supercapacitor has a high specific capacitance of 797.7 mF cm−2 at 2 mA cm−2 and an excellent cycling stability with 85.3 % of capacitance retention after 10 000 cycles at a current density of 3 mA cm−2. The energy density and power density of the asymmetric supercapacitor are up to 6.6 mW h cm−3 and 40.8 mW cm−3, respectively, indicating a fairly promising future of the flexible 3D-Ni/Ni0.75Mn0.25O/C electrode for efficient energy storage applications.  相似文献   

6.
The FT-Raman spectra (2000-30 cm−1) of liquid and solid nitryl chloride, ClNO2, along with the infrared spectra (2000-80 cm−1) of the gas and solid have been recorded. All six fundamentals are confidently identified and the potential energy distributions determined from the force fields obtained from ab initio calculations. Several different basis sets have been utilized to determine the harmonic frequencies and force constants which are compared to the previously reported valence force constants. Structural parameters have been calculated with these basis sets including electron correlation with MP2, MP3 and MP4 perturbation. The calculated equilibrium structural parameters are compared to the experimental r0 structural parameters. The spectra of the solid indicate that there are at least two molecules per primitive cell. All of these results are compared to the corresponding quantities for some similar molecules.  相似文献   

7.
To avoid an enormous energy crisis in the not-too-distant future, it be emergent to establish high-performance energy storage devices such as supercapacitors. For this purpose, a three-dimensional (3D) heterostructure of Co3O4 and Co3S4 on nickel foam (NF) that is covered by reduced graphene oxide (rGO) has been prepared by following a facile multistep method. At first, rGO nanosheets are deposited on NF under mild hydrothermal conditions to increase the surface area. Subsequently, nanowalls of cobalt oxide are electro-deposited on rGO/Ni foam by applying cyclic-voltammetry (CV) under optimized conditions. Finally, for the synthesis of Co3O4@Co3S4 nanocomposite, the nanostructure of Co3S4 was fabricated from Co3O4 nanowalls on rGO/NF by following an ordinary hydrothermal process through the sulfurization for the electrochemical application. The samples are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained sample delivers a high capacitance of 13.34 F cm−2 (5651.24 F g−1) at a current density of 6 mA cm−2 compared to the Co3O4/rGO/NF electrode with a capacitance of 3.06 F cm−2 (1230.77 F g−1) at the same current density. The proposed electrode illustrates the superior electrochemical performance such as excellent specific energy density of 85.68 W h Kg−1, specific power density of 6048.03 W kg−1 and a superior cycling performance (86% after 1000 charge/discharge cycles at a scan rate of 5 mV s−1). Finally, by using Co3O4 @Co3S4/rGO/NF and the activated carbon-based electrode as positive and negative electrodes, respectively, an asymmetric supercapacitor (ASC) device was assembled. The fabricated ASC provides an appropriate specific capacitance of 79.15 mF cm−2 at the applied current density of 1 mA cm−2, and delivered an energy density of 0.143 Wh kg−1 at the power density of 5.42 W kg−1.  相似文献   

8.
Fiber supercapacitors are promising energy storage devices for potential application in wearable and miniaturized portable electronics, which currently suffer from difficulties in achieving high capacitance and energy density synchronously owing to the limited specific surface area of the electrode materials and material incompatibility between the two electrodes. Herein, a strategy is developed for the manufacture of coaxial asymmetric fiber supercapacitors by wrapping a core of PVA-KOH gel electrolyte-coated Ni(OH)2@NiCo2O4/CNT fibers with MoS2@Fe2O3/CNT paper. The as-prepared coaxial fiber asymmetric supercapacitors exhibit a specific capacitance of 373 mF cm−2 (at a current density of 2 mA cm−2) and energy density of 0.13 mW h cm−2 (at a power density of 3.2 mW cm−2), and also show good rate capability, long cycle life, and excellent flexibility. This work provides the possibility for the practical application of fiber supercapacitors in wearable and portable energy storage equipment.  相似文献   

9.
Flexible asymmetric supercapacitors are more appealing in flexible electronics because of high power density, wide cell voltage, and higher energy density than symmetric supercapacitors in aqueous electrolyte. In virtues of excellent conductivity, rich porous structure and interconnected honeycomb structure, three dimensional graphene aerogels show great potential as electrode in asymmetric supercapacitors. However, graphene aerogels are rarely used in flexible asymmetric supercapacitors because of easily re-stacking of graphene sheets, resulting in low electrochemical activity. Herein, flower-like hierarchical Mn3O4 and carbon nanohorns are incorporated into three dimensional graphene aerogels to restrain the stack of graphene sheets, and are applied as the positive and negative electrode for asymmetric supercapacitors devices, respectively. Besides, a strong chemical coupling between Mn3O4 and graphene via the C-O-Mn linkage is constructed and can provide a good electron-transport pathway during cycles. Consequently, the asymmetric supercapacitor device shows high rate cycle stability (87.8 % after 5000 cycles) and achieves a high energy density of 17.4 μWh cm−2 with power density of 14.1 mW cm−2 (156.7 mW cm−3) at 1.4 V.  相似文献   

10.
The far-infrared spectra of gaseous and solid ethyl nitrate, CH3CH2ONO2, have been recorded from 500 to 50 cm−1. The fundamental asymmetric torsion of the trans conformer which has a heavy atom plane has been observed at 112.50 cm−1 with two excited states failing to lower frequencies, and the corresponding fundamental torsion of the gauche conformer was observed at 109.62 cm−1 with two excited states also falling to lower frequencies. The results of a variable temperature Raman study indicate that the trans conformer is more stable than the gauche conformer by 328 ± 96 cm−1 (938 ± 275 cal mol−1). An asymmetric potential function governing the internal rotation about the CH2O bond is reported which gives a trans to gauche barrier of 894 ± 15 cm−1 (2.56 ± 0.04 kcal mol−1) and a gauche to gauche barrier of 3063 ± 68 cm−1 (8.76 ± 0.20 kcal mol−1) with the trans conformer more stable by 220 ± 148 cm−1 (0.63 ± 0.42 kcal mol−1). Transitions arising from the symmetric CH3 and NO2 torsions are observed for both conformers, from which the threefold and twofold periodic barriers to internal rotation have been calculated. For the trans conformer the values are 1002 cm−1 (2.87 kcal mol−1) and 2355 ± 145 cm−1 (6.73 ± 0.42 kcal mol−1) and for the gauche conformer they are 981 cm−1 (2.81 kcal mol−1) and 2736 ± 632 cm−1 (7.82 ± 1.81 kcal mol−1) for the CH3 and NO2 rotors, respectively. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

11.
The infrared spectra of 1,1-dimethylhydrazine, (CH3)2NNH2, and two isotopomers, (CD3)2NNH2 and (CH3)2NND2, have been recorded in the region between 600 and 100 cm−1. Very rich and complex spectra were obtained and analysis of the data has been carried out. The interpretation of the spectra arising from the two methyl torsional modes of the −d0 compound was carried out using a semi-rigid model, and the resulting potential function obtained is V30 = 1685 ± 12 cm−1 (4.82 ± 0.04 kcal mol−1); V03 = 1827 ± 16 cm−1 (5.22 ± 0.05 kcal mol−1); V60 = −92±5cm−1 (−0.26 ± 0.02 kcal mol−1); V06 = −41 ± 6cm−1 (−0.12 ± 0.02 kcal mol−1) and V33 = −51 ± 5 cm−1 (−0.15 ± 0.01 kcal mol−1). Ab initio gradient calculations were carried out employing the 3–21G and 6–31G* basis sets, as well as the 6–31G* basis set with electron correlation at the MP2 level. The structural parameters, conformational stability, and three-fold barriers to internal rotation have been determined and the gauche conformer is calculated to be more stable than the trans form by 783 cm−1 (2.24 kcal mol−1) with the MP2/6–31G* basis set. These calculations were also used to re-evaluate the previously reported assignment of the fundamental modes, and to obtain a potential function for the asymmetric torsion. All of these results are discussed and compared with corresponding quantities for some similar compounds.  相似文献   

12.
The far i.r. (400-50 cm−1) spectra of gaseous and solid furfural (2-furancarboxaldehyde), c-C4H3O (CHO), have been recorded. Additionally, the Raman (3500-20 cm−1) spectra of the gas and liquid have been obtained at variable temperatures and the spectrum of the solid at 25 K. These data have been interpreted on the basis that the molecule exists in two different conformations in the fluid states and that the conformation which has the two oxygen atoms oriented in a trans configuration, OO-trans, is most stable (ΔH ⩽ 1 kcal/mol) in the gas; however, the conformation which has the two oxygen atoms oriented cis, OO-cis, is preferred in the liquid (ΔH = 1.07 ± 0.03 kcal/mol) and is the only rotamer present in the spectra of the solid. The asymmetric torsional fundamental for the OO-trans rotamer has been observed at 146.25 cm−1 in the far i.r. spectrum of the vapor and has five accompanying “hot bands”. The corresponding fundamental for the OO-cis rotamer has been observed at 127.86 cm−1 along with a “hot band” which occurs at 127.46 cm−1. From these data a cosine-based potential function governing internal rotation of the CHO top has been determined and the potential coefficients have values of V1 = 173 ± 2, V2 = 3112 ± 20, V3 = 113 ± 2 and V4 = −198 ± 6 cm−1. This potential is consistent with an enthalpy difference between the more stable OO-trans and high energy OO-cis conformers being 286 ± 24 cm−1 (818 ± 67 cal/mol) and a trans to cis barrier height of 3255 ± 20 cm−1 (9.31 ± 0.06 kcal/mol). These results are compared to the corresponding quantities obtained previously from microwave spectroscopy and theoretical methods.  相似文献   

13.
14.
Using two molecular jet Fourier transform spectrometers, the microwave spectrum of hexan-2-one, also called methyl n-butyl ketone, was recorded in the frequency range from 2 to 40 GHz. Three conformers were assigned and fine splittings caused by the internal rotations of the two terminal methyl groups were analyzed. For the acetyl methyl group CH3 COC3H6CH3, the torsional barrier is 186.9198(50) cm−1, 233.5913(97) cm−1, and 182.2481(25) cm−1 for the three observed conformers, respectively. The value of this parameter could be linked to the structure of the individual conformer, which enabled us to create a rule for predicting the barrier height of the acetyl methyl torsion in ketones. The very small splittings arising from the internal rotation of the butyl methyl group CH3COC3H6 CH3 could be resolved as well, yielding the respective torsional barriers of 979.99(88) cm−1, 1016.30(77) cm−1, and 961.9(32) cm−1.  相似文献   

15.
The far infrared spectra from 300 to 50 cm−1 of methyl nitrate, CH3ONO2, and methyl-d3 nitrate, CD3NO2, have been recorded at a resolution of 0.12 cm−1. The fundamental methyl torsional mode has been observed at 204.5 cm−1 (154.2 cm−1 for CD3ONO2) with two excited states falling to lower frequencies which gives a V3 barrier of 980 ± 40 cm−1 (2.80 ± 0.11 kcal/mol). The NO2 torsion (methoxy) has been observed with the 1 ← 0 transition being at 133.7 cm−1 (119.5 cm−1 for CD3ONO2) and eight successive excited states falling to lower frequencies. From these data the twofold barrier to internal rotation has been calculated to be 2650 ± 75 cm−1 (7.69 ± 0.21 kcal/mol).  相似文献   

16.
Intense 2.7 μm emission derived from modified Er3+ doped germanate glass was reported. Raman spectrum analysis was carried out to grasp glass structure. Based on the absorption spectrum, the Judd–Ofelt parameters and radiative properties were calculated originated from Judd–Ofelt theory. 2.7 μm emission characteristics, stark splitting features and energy transfer processes upon excitation of a conventional 808 nm or 980 nm laser diode were carefully investigated. The prepared glass possesses high spontaneous transition probability (34.28 s−1), large calculated emission cross section (13 × 10−21 cm2) and gain coefficient (5.4 cm−1) for the 4I11/2 → 4I13/2 transition. These results indicate that Er3+ doped germanate glass has potential applications in mid-infrared lasers and amplifiers.  相似文献   

17.
The electrical conductivies of the poly(alkynylsilane)s [C-SiR1R2-CC-Z]n (R1R2Si = Ph2Si, nOct(Me)Si, 2,3.4,5-tetraphenyl-1-sila-2,4-cyclopentene; Z = (hetero)aromatic group) doped with FeCl3 are found to lie in the range 10−9 < α < 10−3 S cm−1, whereas those of the undoped polymers are less than 10−10 S cm−1. The presence of Ph groups on Si leads to incresed conductivity.  相似文献   

18.
Inspired by the self-assembly of nanoparticle superlattices, we report a general method that exploits long-chain molecular ligands to induce ordered assembly of colloidal nanosheets (NSs), resulting in 2D laminate superlattices with high packing density. Co-assembly of two types of NSs further enables 2D/2D heterostructured superlattices. As a proof of concept, co-assembly of Ti3C2Tx and graphene oxide (GO) NSs followed by thermal annealing leads to MXene-rGO superlattices with tunable microstructures, which exhibit significantly higher capacitance than their filtrated counterparts, delivering an ultrahigh volumetric capacitance of 1443 F cm−3 at 2 mV s−1. Moreover, the as-fabricated binder-free symmetric supercapacitors show a high volumetric energy density of 42.1 Wh L−1, which is among the best reported for MXene-based materials in aqueous electrolytes. This work paves the way toward rational design of 2D material-based superstructures for energy applications.  相似文献   

19.
Triple helicene-like semi-fused trimeric NiII porphyrins were constructed by alkyne trimerization of an ethynyl-substituted porphyrin and subsequent three-fold Grignard addition to the formyl groups and acid-catalyzed intramolecular cyclization. The presence of stereogenic sp3 carbons in the central bridge leads to small inter-porphyrin conjugative interactions as was revealed by electrochemical and optical properties. Two diastereomers with stable chiral conformations were optically resolved, and the separated enantiomers displayed considerably intense circular dichroism. Importantly, the chiroptical response of C3-symmetric helical isomer (|Δϵ|=830 m −1 cm−1) is 1.8 times amplified from that of C1-symmetric one (|Δϵ|=470 m −1 cm−1). The observed amplification has been interpreted in terms of different spatial arrangements of the three porphyrins.  相似文献   

20.
Reactions of OH and OD radicals with CH3C(O)SH, HSCH2CH2SH, and (CH3)3CSH were studied at 298 K in a fast-flow reactor by infrared emission spectroscopy of the water product molecules. The rate constants (1.3 ± 0.2) × 10−11 cm3 molecule−1 s−1 for the OD + CH3C(O)SH reaction and (3.8 ± 0.7) × 10−11 cm3 molecule−1 s−1 for the OD + HSCH2CH2SH reaction were determined by comparing the HOD emission intensity to that from the OD reaction with H2S, and this is the first measurement of these rate constants. In the same manner, using the OD + (C2H5)2S reference reaction, the rate constant for the OD + (CH3)3CSH reaction was estimated to be (3.6 ± 0.7) × 10−11 cm3 molecule−1 s−1. Vibrational distributions of the H2O and HOD molecules from the title reactions are typical for H-atom abstraction reactions by OH radicals with release of about 50% of the available energy as vibrational energy to the water molecule in a 2:1 ratio of stretch and bend modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号