首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isotopic composition of tree-ring cellulose was obtained over a two-year period from small diameter, riparian zone trees along an elevational transect in Big Cottonwood Canyon, Utah, USA to test for a possible temperature dependence of net biological fractionation during cellulose synthesis. The isotope ratios of stream water varied by only 3.6% and 0.2% in deltaD and delta18O, respectively, over an elevation change of 810m. The similarity in stream water and macroenvironment over the short (13km) transect produced nearly constant stem and leaf water deltaD and delta18O values. In addition, what few seasonal variations observed in the isotopic composition of source water and atmospheric water vapor or in leaf water evaporative enrichment were experienced equally by all sites along the elevational transect. The temperature at each site along the transect spanned a range of > or = 5 degrees C as calculated using the adiabatic lapse rate. Since the deltaD and delta18O values of stem and leaf water varied little for these trees over this elevation/temperature transect, any differences in tree-ring cellulose deltaD and delta18O values should have been associated with temperature effects on net biological fractionation. However, the slopes of the regressions of elevation versus the deltaD and delta18O values of tree-ring cellulose were not significantly different from zero indicating little or no temperature dependence of net biological fractionation. Therefore, cross-site climatic reconstruction studies using the isotope ratios of cellulose need not be concerned that temperatures during the growing season have influenced results.  相似文献   

2.
Abstract Stable isotope ((13)C, (18)O, (34)S) and trace element (Sr(2+), Mg(2+), Mn(2+), Ba(2+), Na(+)) investigations of elemental sulfur, primary calcites and mixtures of aragonite with secondary, post-aragonitic calcite from sulfur-bearing limestones have provided new insights into the geochemistry of the mineral forming environment of the native sulfur deposit at Machów (SE-Poland). The carbon isotopic composition of carbonates (δ(13)C = -41 to -47‰ vs. PDB) associated with native sulfur (δ(34)S = + 10 to + 15‰ vs. V-CDT) relates their formation to the microbiological anaerobic oxidation of methane and the reduction of sulfate derived from Miocene gypsum. From a comparison with experimentally derived fractionation factors the element ratios of the aqueous fluids responsible for carbonate formation are estimated. In agreement with field and laboratory observations, ratios near seawater composition are obtained for primary aragonite, whereas the fluids were relatively enriched in dissolved calcium during the formation of primary and secondary calcites. Based on the oxygen isotope composition of the carbonates (δ(18)O = -3.9 to -5.9‰ vs. PDB) and a secondary SrSO(4) (δ(18)O = + 20‰ vs. SMOW; δ(34)S = + 59‰ vs. V-CDT), maximum formation temperatures of 35°C (carbonates) and 47°C (celestite) are obtained, in agreement with estimates for West Ukraine sulfur ores. The sulfur isotopic composition of elemental sulfur associated with carbonates points to intense microbial reduction of sulfate derived from Miocene gypsum (δ(34)S ≈ + 23‰) prior to the re-oxidation of dissolved reduced sulfur species.  相似文献   

3.
The stable isotopic analyses of molecular oxygen dissolved in water (delta18O(DO)) and dissolved inorganic carbon (delta13C(DIC)), supplemented with basic chemical measurements, have been carried out on a diurnal basis to better understand the dynamics of photosynthesis and respiration in freshwater systems. Our observations have been carried out in a lowland dam reservoir, the Sulejow Lake (central Poland), during the summer cyanobacterial bloom. All data obtained, isotopic, hydrochemical, and biological, show a high mutual consistency. Namely, the lowest delta18O(DO) values, obtained at 10:00 and 14:00 (16.0 and 15.5 per thousand, respectively), correspond to the highest amount of cyanobacterial cells observed (66 and 63 mg dm(-3), respectively), whereas the minimum delta13C(DIC) (-10.6 per thousand) obtained at 22:00 corresponds to the maximum content of organic matter (110 mg dm(-3)). This evidence suggests that isotopic assays of delta18O(DO) and delta13C(DIC) are a reliable tool for the quantitative study of biochemical processes in freshwater systems.  相似文献   

4.
Water samples from three quarry lakes and the surrounding fractured rock aquifer were investigated for delta18O and delta2H (H2O), delta15N and delta18O (NO3-), as well as anions and cations. Lake water and groundwater can be distinguished by their different chemical and isotopic composition. Because of evaporation processes, 18O and 2H are enriched in the lake water and can be used as natural tracers for the water dynamic of the lakes. The groundwater is characterised by high nitrate concentrations (up to 120 mg/l). Lake internal processes reduce the nitrate concentration in the quarry lakes. However, no enrichment of delta15N and delta18O in nitrate, typical for microbial nitrate degradation, is observed in the lake water. Because of the complex flow paths in the fractured rock aquifer and the intense chemical transformations at the interface between groundwater and lake water, isotopic and hydrochemical data of lake water and groundwater alone do not conclusively explain hydrological and hydrochemical processes of the investigated lake-groundwater system.  相似文献   

5.
Oxygen and carbon isotopic compositions of tree ring cellulose (delta13Ccell and delta18Ocell) were measured for pines growing at four sites in east Germany. Three sites differed markedly in soil water availability within a short distance and the fourth site served as a reference. The choice of the sites was guided by the desire to detect effects of air pollution on the long-term trend of isotopic compositions and to examine the influence of soil water availability on the relationship between the carbon and oxygen isotope ratios. Locations in east Germany are particularly well suited for the study of pollution effects because there was a steady increase in environmental contamination until the German Reunification in 1990, followed by a sharp decline due to the implementation of stricter environmental standards. The long-term trend of delta13Ccell showed an extraordinary increase in the period 1945-1990 and a rapid decrease after 1990, whereas delta18Ocell remained nearly constant. The increase of delta13Ccell is explained by secondary fractionation caused by phytotoxicity of SO2. Two effects are mainly responsible for the secondary fractionation under SO2 exposure: increase of dark respiration, and changes in photosynthate allocation and partitioning. Both effects do not influence delta18Ocell. Furthermore, a significant positive correlation between the year-to-year variations of carbon and oxygen isotope ratios (delta13Cresid and delta18Oresid) has been found for all sites. The slopes of the relationship between delta13Cresid and delta18Oresid differ insignificantly. It is concluded that this relationship is not influenced by soil water availability but by climatic variables.  相似文献   

6.
Stable isotopes of hydrogen and oxygen were used to examine how the isotopic signal of meteoric water is modified as it travels through soil and epikarst into two caves in Florida. Surface and cave water samples were collected every week from February 2006 until March 2007. The isotopic composition of precipitation at the investigated sites is highly variable and shows little seasonal control. The delta18O vs. delta2H plot shows a mixing line having a slope of 5.63, suggesting evaporation effects dominate the isotopic composition of most rainfall events of less than 8 cm/day, as indicated by their low d-excess values. The delta18O values of the drip water show little variability (<0.6 per thousand), which is loosely tied to local variations in the seasonal amount of precipitation. This is only seen during wintertime at the Florida Caverns site. The lag time of over two months and the lack of any relationship between rainfall amount and the increase in drip rate indicate a dominance of matrix flow relative to fracture/conduit flow at each site. The long residence time of the vadose seepage waters allows for an effective isotopic homogenisation of individual and seasonal rainfall events. We find no correlation between rainfall and drip water delta18O at any site. The isotopic composition of drip water in both caves consistently tends to resemble the amount-weighted monthly mean rainfall input. This implies that the delta18O of speleothems from these two caves in Florida cannot record seasonal cycle in rainfall delta18O, but are suitable for paleoclimate reconstructions at inter-annual time scales.dagger.  相似文献   

7.
Abstract

Stable isotope (13C, 18O, 34S) and trace element (Sr2+, Mg2+, Mn2+, Ba2+, Na+) investigations of elemental sulfur, primary calcites and mixtures of aragonite with secondary, post-aragonitic calcite from sulfur-bearing limestones have provided new insights into the geochemistry of the mineral forming environment of the native sulfur deposit at Machów (SE-Poland). The carbon isotopic composition of carbonates (δ13C = ?41 to ?47‰ vs. PDB) associated with native sulfur (δ34S = + 10 to + 15‰ vs. V-CDT) relates their formation to the microbiological anaerobic oxidation of methane and the reduction of sulfate derived from Miocene gypsum. From a comparison with experimentally derived fractionation factors the element ratios of the aqueous fluids responsible for carbonate formation are estimated. In agreement with field and laboratory observations, ratios near seawater composition are obtained for primary aragonite, whereas the fluids were relatively enriched in dissolved calcium during the formation of primary and secondary calcites. Based on the oxygen isotope composition of the carbonates (δ18O = ?3.9 to ?5.9‰ vs. PDB) and a secondary SrSO418O = + 20‰ vs. SMOW; δ34S = + 59‰ vs. V-CDT), maximum formation temperatures of 35°C (carbonates) and 47°C (celestite) are obtained, in agreement with estimates for West Ukraine sulfur ores. The sulfur isotopic composition of elemental sulfur associated with carbonates points to intense microbial reduction of sulfate derived from Miocene gypsum (δ34S ≈ + 23‰) prior to the re-oxidation of dissolved reduced sulfur species.  相似文献   

8.
The paper deals with analytical and procedural aspects of delta18O and delta2H determination in saline oil-associated waters. The main objective of the study was to show experimentally the qualitative and quantitative applicability of the simple vacuum distillation of saline oil-associated waters while routine procedures of water isotopic analyses are applied. Additionally, two standard off-line techniques of delta2H determination in water - the zinc and the chromium method - have been compared. Each time a typical isotope salt effect has been tracked on the Dead Sea water. The results clearly show that application of the simple vacuum distillation improve the accuracy and reproducibility of delta2H determinations, especially in chromium off-line technique which appeared to be more sensitive to water salinity. The simple vacuum distillation does not improve the quality of delta18O determinations in the range of water salinities studied. Its application to high concentrated brines (for example, Dead Sea water) decreases the time of equilibration but still propagate the isotopic error connected with low water activity (in the case of 18O/16O ratio) and the incomplete water extraction from the remaining salts (in the case of 2H/1H ratio); in consequence, its time-consuming application seems to be baseless.  相似文献   

9.
Stable isotopic compositions (delta2H and delta18O) of daily precipitation collected in the period from October 2002 to March 2003 and monthly precipitation in the period from 2001 to 2003, as well as the corresponding meteorological data (temperature, amount of precipitation), all collected in Zagreb, Croatia, are presented. delta2H and delta18O values, both daily and monthly, show large variations due to large temperature variations and the different origin of the air masses. Variations are larger for daily samples than for composite monthly samples. Good correlation of delta18O with temperature is obtained for both types of samples. On the basis of the correlation between delta2H and delta18O, the local meteoric water line is close to the global meteoric water line. Deuterium excess of both daily and monthly precipitation indicates that in the Zagreb area, the influence of air masses from the Mediterranean area prevails in the autumn period.  相似文献   

10.
The hydrogen isotopic fractionation factors between the crystal water (CW) in crystalline hydrates and the saturated aqueous solution of cobalt dichloride, alphaCW-st.sol, were experimentally determined in the temperature range from 10 to 55 degrees C under equilibrium condition: alphaCW-st.sol in cobalt dichloride hexahydrate, CoCl2 x 6H2O, from 10 to 43 degrees C, and in cobalt dichloride dihydrate, CoCl2 x 2H2O, at 50 and 55 degrees C. The empirical relationship between ln alphaC.W.-st.sol and (1/T2) on the CW of CoCl2 x 6H2O in the temperature range from 10 to 43 degrees C was obtained as: 10(3)ln alphaCW-st.sol=-2.46(10(6)/T2)+17.6. The CW of dihydrate of cobalt dichloride exhibits larger depletion of deuterium than that of hexahydrate. The values of alphaCW-st.sol in CoCl2 x 2H2O are similar to that of CuCl2 x 2H2O and BaCl2 x 2H2O at 25 degrees C. This fact indicates that the hydrogen fractionation factor between the CW and the saturated aqueous solution of cobalt dichloride strongly depends on the structure of crystalline hydrate rather than the chemical species of cation and/or the crystallized temperature.  相似文献   

11.
The stable isotope composition of hydrogen (delta(2)H) and oxygen (delta(18)O) in monthly precipitation and river water (Sava River and Danube) samples in the Belgrade area gathered between 1992 and 2005 are determined. The local meteoric water line delta(2)H=7.8 (+/-0.2) delta(18)O+7.3(+/-1.6) (r(2)=0.98, n=60, sigma=0.52) for the whole period of observation is close to the global meteoric water line. The amount-weighted mean delta(2)H and delta(18)O values of precipitation were-65+/-27 per thousand and-9.4+/-3.4 per thousand, respectively. Good correlation between delta(18)O values (r approximately >0.67) and ambient temperature and relative humidity was obtained. Stream-water data ranged from-94 to-60 per thousand for delta(2)H and from-11.0 to approximately 5.7 per thousand for delta(18)O with highly statistically significant difference (p>0.01) between the Sava River and the Danube. In addition, the isotopic compositions of local precipitation and adjacent river water at monitoring sites were compared. Obtained data will give an opportunity to improve the knowledge of mixing stream water and local groundwater, and assessment of potential groundwater risks and pressures in the Belgrade basin.  相似文献   

12.
The use of stable isotopes of N and O in N2O has been proposed as a way to better constrain the global budget of atmospheric N2O and to better understand the relative contributions of the main microbial processes (nitrification and denitrification) responsible for N2O formation in soil. This study compared the isotopic composition of N2O emitted from soils under different tree species in the Brazilian Amazon. We also compared the effect of tree species with that of soil moisture, as we expected the latter to be the main factor regulating the proportion of nitrifier- and denitrifier-derived N2O and, consequently, isotopic signatures of N2O. Tree species significantly affected delta15N in nitrous oxide. However, there was no evidence that the observed variation in delta15N in N2O was determined by varying proportions of nitrifier- vs. denitrifier-derived N2O. We submit that the large variation in delta15N-N2O is the result of competition between denitrifying and immobilizing microorganisms for NO3(-). In addition to altering delta15N-N2O, tree species affected net rates of N2O emission from soil in laboratory incubations. These results suggest that tree species contribute to the large isotopic variation in N2O observed in a range tropical forest soils. We found that soil water affects both 15N and 18O in N2O, with wetter soils leading to more depleted N2O in both 15N and 18O. This is likely caused by a shift in biological processes for 15N and possible direct exchange of 18O between H2O and N2O.  相似文献   

13.
We examined a floodplain area in the middle section of the river Elbe Valley with regard to hydrogeological and hydrological processes using isotopic methods. Over two years, river water and groundwater have been analysed for temporal and spatial chemical and isotopic (delta2H and delta18O) changes. By these methods we assessed the flow dynamics of the river-groundwater infiltration system. At low and mean river stages there is a general hydraulic gradient from the higher areas at the margin of the valley towards the floodplain. During floods river water infiltrates into the adjacent aquifer not primarily through the river banks but first through surface water inflow from north to south, via depressions and gullies from the back of the floodplain. The early stage of river water infiltration is characterized by a sharp decrease in conductivity and in concentrations of SO4(2-) and Cl- in the hydraulically connected shallow aquifer. delta2H and delta18O values show a similar tendency. We observed a significant minimum in stable isotope ratios during the flood in March 1999. Using a simple mixing equation it was calculated that the groundwater in the upper, shallow aquifer consists of around 70% river water in the transition zone (well 13) during flooding.  相似文献   

14.
The study presents first data on the delta(18)O performance of poikilohydrous lichen ground cover, and its potential impact on the isotopic composition of water fluxes arising from subjacent soil layers. As a model organism, the globally distributed lichen Cladina arbuscula was studied under laboratory conditions as well as in the field. During a desiccation experiment, delta(18)O of the lichen's thallus water and of its respired CO(2) became enriched by approximately 7 per thousand and followed a similar enrichment pattern to that expected from homoiohydrous, vascular plants. However, the observed degree of enrichment was lower in comparison to vascular plants due to (i) the lichen's inherent lower evaporative resistances; and (ii) a stronger effect of the more depleted surrounding water vapour. In lichens growing in their natural habitat, this specific pattern may show substantial variations depending on prevailing microclimatic conditions. Within a field study, thallus water delta(18)O of lichens principally proved to become more depleted when close to equilibration with the surroundings. It thereby strongly depended on the absorption of surrounding water vapour. Moreover, the results indicate that lichen mats substantially reduce evaporation rates arising from subjacent soil layers, and may alter the isotopic signal of vapour diffusing away from these layers into more depleted values.  相似文献   

15.
Numerous organic and inorganic laboratory standards were gathered from nine European and North American laboratories and were analyzed for their delta(18)O values with a new on-line high temperature pyrolysis system that was calibrated using Vienna standard mean ocean water (VSMOW) and standard light Antartic precipitation (SLAP) internationally distributed reference water samples. Especially for organic materials, discrepancies between reported and measured values were high, ranging up to 2 per thousand. The reasons for these discrepancies are discussed and the need for an exact and reliable calibration of existing reference materials, as well as for the establishment of additional organic and inorganic reference materials is stressed. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Current methods for stable oxygen isotopic (delta (18)O) analysis of soil water rely on separation of water from the soil matrix before analysis. These separation procedures are not only time consuming and require relatively large samples of soil, but also have been shown to introduce a large potential source of error. Current research at Queen's University Belfast is focused on using direct equilibration of CO(2) with the pore water to eliminate this extraction step using the automated Multiprep system and a Micromass Prism III isotope ratio mass spectrometer (IRMS). The findings of this research indicate the method is less time consuming, more reliable, and reproducible to within accepted limits (+/-0.1% per thousand delta (18)O). In this study the direct equilibration method is used to analyse delta (18)O tracer profiles in the unsaturated zone of field soils, concurrently with chloride tracer profiles, which can be used to assess infiltration rates and mechanisms through the unsaturated zone. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Beaver Lake and Radok Lake, the largest known epishelf lake and the deepest freshwater lake on the Antarctic continent, respectively, were isotopically (δ(2)H, δ(18)O) and hydrogeochemically studied. Radok Lake is an isothermal and non-stratified, i.e. homogeneous water body, while Beaver Lake is stratified with respect to temperature, salinity, and isotopic composition. The results for the latter attest to freshwater (derived from snow and glacier melt) overlying seawater.  相似文献   

18.
A new secondary isotopic reference material has been prepared from Puerto Rico precipitation, which was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material, designated as USGS48, is intended to be one of two isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The δ2H and δ18O values of this reference water are?2.0±0.4 and?2.224±0.012 ‰, respectively, relative to Vienna Standard Mean Ocean Water on scales normalised such that the δ2H and δ18O values of Standard Light Antarctic Precipitation reference water are?428 and?55.5 ‰, respectively. Each uncertainty is an estimated expanded uncertainty (U=2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.  相似文献   

19.
The stable isotopic composition (delta(2)H and delta(18)O) of short-term (daily) precipitation collected from October 2002 to September 2003 at two stations in a coastal, karstic area in south-western Slovenia was investigated. In addition, monthly composite samples were collected and analysed for comparison with amount-weighted monthly means. The delta(2)H and delta(18)O values obtained show a wide range and reflect seasonal climatic variations. Deuterium excess and local meteoric water lines (LMWLs) were determined and cumulative frequency analysis and coincidence tests were performed. The statistical coincidence test showed that the LMWLs calculated from monthly data for Portoroz and Kozina are coincident, but the LMWLs calculated from daily precipitation events are not. This difference could be explained by the greater variance of the isotopic composition of daily precipitation in comparison to monthly composite samples and also to the influence of evaporation during events below<1 mm at Portoroz during the extremely dry and warm spring-summer season of 2003. Finally, synoptic maps and backward trajectories of a selected precipitation event showed that changes of isotopic composition are related to mixing of air masses originating from the continent and Mediterranean cyclogenesis.  相似文献   

20.
Abstract

The isotopic composition of tree-ring cellulose was obtained over a two-year period from small diameter, riparian zone trees along an elevational transect in Big Cottonwood Canyon, Utah, USA to test for a possible temperature dependence of net biological fractionation during cellulose synthesis. The isotope ratios of stream water varied by only 3.6‰ and 0.2‰ in δD and δ18O, respectively, over an elevation change of 810m. The similarity in stream water and macroenvironment over the short (13km) transect produced nearly constant stem and leaf water δD and δ18O values. In addition, what few seasonal variations observed in the isotopic composition of source water and atmospheric water vapor or in leaf water evaporative enrichment were experienced equally by all sites along the elevational transect. The temperature at each site along the transect spanned a range of ≥ 5°C as calculated using the adiabatic lapse rate. Since the δD and δ18O values of stem and leaf water varied little for these trees over this elevation/ temperature transect, any differences in tree-ring cellulose δD and δ18O values should have been associated with temperature effects on net biological fractionation. However, the slopes of the regressions of elevation versus the δD and δ18O values of tree-ring cellulose were not significantly different from zero indicating little or no temperature dependence of net biological fractionation. Therefore, cross-site climatic reconstruction studies using the isotope ratios of cellulose need not be concerned that temperatures during the growing season have influenced results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号