首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
SmCo合金具有极高的单轴磁晶各向异性,成为未来高密度磁记录介质的候选材料之一.本文采用磁控溅射方法,在玻璃基片上制备了Cr(100nm)/SmCo(50 nm)/Cr(20 nm)结构的Smco薄膜,SmCo层中Sm含量为35%(原子分数).利用综合物性测试系统(PPMS)和X射线衍射(XRD)对薄膜的磁性能和晶体学结构进行了测试.结果表明,通过550℃退火20 min可以获得很好的硬磁性能,矫顽力R.达到了3183kA·m-1,XRD结果表明薄膜中同时存在磁性相SmCo5和非磁性相SmCo2等.高Sm古量的SmCo薄膜在退火温度为450℃时开始晶化,退火温度达到550℃时,晶化进行的比较完全.  相似文献   

2.
研究了Sm(CobalFe0.1Cu0.16Zr0.04)7.0快淬带在微波场作用下晶化处理后的微结构及磁性能。结果表明,Sm(CobalFe0.1Cu0.16Zr0.04)7.0在传统晶化处理后晶粒尺寸约为500-1500 nm,FeCo软磁性相异常长大。微波场作用下,合金在700℃处理4 min时晶粒尺寸约为10 nm,磁体的Ms为1.192 T,Hci为14.8 kA.m-1;在650-700℃处理4-30 min均获得了晶粒尺寸为20 nm的单一球形颗粒,磁体主要由1∶7主相和少量Sm2Co7相构成。在650℃晶化处理30 min后,合金具有方形度较好的平滑磁滞回线,Hci为542.6 kA.m-1,剩磁比达0.86。微波场可细化晶粒尺寸并抑制FeCo软磁性相的生成,使磁体具有良好的交换耦合作用。  相似文献   

3.
直流磁控溅射工艺对SmCo薄膜的影响   总被引:1,自引:0,他引:1  
采用不同的直流磁控溅射工艺, 制备了SmCo薄膜.分别用能谱(EDAX)和俄歇谱仪(ASE)对薄膜的平均成份和表面到内部成份分布进行了分析, 用振动样品磁强计(VSM)分析了薄膜的磁性能, 用原子力显微镜(ATM)分析了溅射薄膜的表面颗粒形貌.结果表明, 溅射工艺因素对薄膜的成份和磁性能有较大的影响.  相似文献   

4.
铜、钛复合添加对结NdFeB磁体显微组织和磁性能的影响   总被引:2,自引:0,他引:2  
研究了烧结NdFeB磁体晶间合添加Cu和Ti 对磁体显微组织和磁性能的影响,当钛含量小于1.2%时,Cu和Ti晶间复合添加可大幅度提高烧结NdFeB磁体的矫顽力,磁变化不大,矫顽力的提高归因于Cu和Ti在主相晶粒表面富集,细化晶粒,阻断主相晶粒之间的磁交换作用,阻碍反磁化畴的传播,当钛含量大于1.2%时,矫顽力略有下降,乘磁急剧下降,乘磁下降的原因在于出现了大量的条状纯钛相。与晶间单独合金化相比,晶间复合合金化可更有效改善NdFeB磁体显微组织与性能。  相似文献   

5.
用穆斯堡尔效应等方法研究了Sm(Co,Cu,Fc,Zr)_(7.4)永磁合金中锆的作用。结果表明,锆控制合金的晶粒尺寸。锆的加入,促使铁原子由1:5相进入2:17相,同时铜和锆等非磁性原子由2:17相进入1:5相,加大了两相化学成分和磁性能的差别;促使2:17相中铁原子由Co1晶位进入Co3晶位,从而提高了合金的单轴各向异性。这两点都有利于合金矫顽力的提高。  相似文献   

6.
采用不加偏压的磁控溅射方法,制备了具有垂直磁晶各向异性的TbCo/Cr非晶垂直磁化膜,并且就Cr底层对TbCo膜磁性能的影响进行了研究。研究发现TbCo磁性层的厚度以及Cr底层的存在都会影响TbCo薄膜磁晶各向异性能的大小。对于厚度为120 nm,并且带有180 nm厚度Cr底层的Tb31C69薄膜而言,其磁晶各向异性能高达4.57×106 erg·cm-3,而对于同样厚度的Tb31C69薄膜,当它没有带Cr底层时,其磁晶各向异性能只有3.24×106 erg·cm-3。扫描电镜的观测结果表明,带有Cr底层的TbCo薄膜具有柱状结构。正是TbCo薄膜内的柱状结构导致了其磁晶各向异性的增强。  相似文献   

7.
采用循环伏安法在GaAs(100)单晶表面电沉积了铁族金属单质薄膜. 扫描电子显微镜(SEM)结果显示, Fe族金属薄膜的晶粒较小, 薄膜平整度较高。通过X射线衍射(XRD)谱分析了Fe, Co, Ni在GaAs(100)晶面上的外延生长. 使用磁光克尔效应装置研究了Fe族金属薄膜的宏观磁性, 用同步辐射圆偏振软X射线测量了铁族单质磁性薄膜的吸收谱, 获得了X射线磁性圆二色谱, 并通过加和定则计算了磁性薄膜中Fe族金属原子的轨道磁距和自旋磁矩.  相似文献   

8.
通过甩带快淬法制备三元合金(Fe0.81Ga0.19100-xBx (Fe-Ga-B)和(Fe0.81Ga0.19100-xInx (Fe-Ga-In)薄带样品,并对Fe-Ga-B合金样品进行热处理。通过高分辨X射线衍射(HRXRD)和扩展X射线吸收精细结构谱(EXAFS)技术表征薄带的微观结构,利用振动样品磁强计和标准电阻应变仪测量了样品的磁性及饱和磁致伸缩系数。研究表明,有序的L12相降低了(Fe0.81Ga0.1998B2样品的磁致伸缩系数。B原子添加形成的Fe2B相和modified-DO3相有利于提高Fe-Ga合金的磁致伸缩系数。但Fe2B相的饱和磁化强度小于A2相,饱和磁场却远大于A2相,因此随着B含量的增加,Fe-Ga-B薄带的饱和磁化强度逐渐减小,矫顽力逐渐增加。合金中形成的非磁性富In相使得In掺杂Fe-Ga-In合金的磁致伸缩系数和饱和磁化强度均减小。非磁性富In相使晶格产生畸变,减弱了磁弹性效应,并且抑制了磁畴的运动,从而明显地减小了Fe-Ga带材样品的磁致伸缩系数以及饱和磁化强度,提高了Fe-Ga合金的矫顽力。  相似文献   

9.
以软磁性相α—Fe和硬磁性相Nd2Fe14B为例,研究了软、硬磁性晶粒间的交换耦合作用和有效各向异性随晶粒尺寸和软、硬磁性晶粒不同尺寸比例(Ds:Dh)的变化关系。当晶粒尺寸大于其铁磁交换长度时,晶粒的各向异性分为晶粒内部无交换耦合和晶粒表面有交换耦合部分,其各向异性常数为两部分的统计平均值。计算结果表明:软、硬磁性晶粒间的有效各向异性随晶粒尺寸的减小而下降,随软、硬磁性晶粒尺寸比值(Ds:Dh)的减小而增加。为使软、硬磁性晶粒间的有效各向异性常数Keff保持较高的值,应控制硬磁性晶粒大于30nm。软磁性晶粒在10nm左右。  相似文献   

10.
盘登科  张慧 《化学学报》2011,69(13):1545-1552
通过调变镁铁尖晶石的含量, 采用一步共沉淀法制备了一系列具有核壳结构的水滑石型磁性纳米载药粒子, 对其微结构、热稳定性、磁性和药物释放性能进行了系统的研究. 结果表明这种磁性纳米载药粒子是一种具有以镁铁尖晶石为核层、双氯酚酸(Diclofenac, DIC)插层水滑石(DIC-LDH)为壳层的复合纳米粒子, 粒径在90~180 nm之间. 其中壳层DIC-LDH的晶粒尺寸D110和层板电荷密度随磁核含量的增大而逐渐减小. 磁性纳米载药粒子的载药量随磁核含量的增大而逐渐减小, 而其比饱和磁化强度则随着磁核含量的增大逐渐增大. 体外释放实验表明, 无外加磁场时, 磁核含量增大, 壳层DIC-LDH粒径减小, 磁性纳米载药粒子药物释放速率逐渐增大|外加1500 G磁场时, 磁核含量增大, 磁致团聚程度增大, 其药物释放速率逐渐减小.  相似文献   

11.
We report the controlled synthesis of exchange‐coupled face‐centered tetragonal (fct) FePd/α‐Fe nanocomposite magnets with variable Fe concentration. The composite was converted from Pd/Fe3O4 core/shell nanoparticles through a high‐temperature annealing process in a reducing atmosphere. The shell thickness of core/shell Pd/Fe3O4 nanoparticles could be readily tuned, and subsequently the concentration of Fe in nanocomposite magnets was controlled. Upon annealing reduction, the hard magnetic fct‐FePd phase was formed by the interdiffusion between reduced α‐Fe and face‐centered cubic (fcc) Pd, whereas the excessive α‐Fe remained around the fct‐FePd grains, realizing exchange coupling between the soft magnetic α‐Fe and hard magnetic fct‐FePd phases. Magnetic measurements showed variation in the magnetic properties of the nanocomposite magnets with different compositions, indicating distinct exchange coupling at the interfaces. The coercivity of the exchange‐coupled nanocomposites could be tuned from 0.7 to 2.8 kOe and the saturation magnetization could be controlled from 93 to 160 emu g?1. This work provides a bottom‐up approach using exchange‐coupled nanocomposites for engineering advanced permanent magnets with controllable magnetic properties.  相似文献   

12.
Multiferroics, materials that exhibit coupling between spontaneous magnetic and electric dipole ordering, have significant potential for high-density memory storage and the design of complex multistate memory elements. In this work, we have demonstrated the solvent-controlled synthesis of Cr(3+)-doped BaTiO(3) nanocrystals and investigated the effects of size and doping concentration on their structure and phase transformation using X-ray diffraction and Raman spectroscopy. The magnetic properties of these nanocrystals were studied by magnetic susceptibility, magnetic circular dichroism (MCD), and X-ray magnetic circular dichroism (XMCD) measurements. We observed that a decrease in nanocrystal size and an increase in doping concentration favor the stabilization of the paraelectric cubic phase, although the ferroelectric tetragonal phase is partly retained even in ca. 7 nm nanocrystals having the doping concentration of ca. 5%. The chromium(III) doping was determined to be a dominant factor for destabilization of the tetragonal phase. A combination of magnetic and magneto-optical measurements revealed that nanocrystalline films prepared from as-synthesized paramagnetic Cr(3+)-doped BaTiO(3) nanocrystals exhibit robust ferromagnetic ordering (up to ca. 2 μ(B)/Cr(3+)), similarly to magnetically doped transparent conducting oxides. The observed ferromagnetism increases with decreasing constituent nanocrystal size because of an enhancement in the interfacial defect concentration with increasing surface-to-volume ratio. Element-specific XMCD spectra measured by scanning transmission X-ray microscopy (STXM) confirmed with high spatial resolution that magnetic ordering arises from Cr(3+) dopant exchange interactions. The results of this work suggest an approach to the design and preparation of multiferroic perovskite materials that retain the ferroelectric phase and exhibit long-range magnetic ordering by using doped colloidal nanocrystals with optimized composition and size as functional building blocks.  相似文献   

13.
Controlling exchange coupling between hard magnetic and soft magnetic phases is the key to the fabrication of advanced magnets with tunable magnetism and high energy density. Using FePt as an example, control over the magnetism in exchange‐coupled nanocomposites of hard magnetic face‐centered tetragonal (fct) FePt and soft magnetic Co (or Ni, Fe2C) is shown. The dispersible hard magnetic fct‐FePt nanoparticles are first prepared with their coercivity (Hc) reaching 33 kOe. Then core/shell fct‐FePt/Co (or Ni, Fe2C) nanoparticles are synthesized by reductive thermal decomposition of the proper metal precursors in the presence of fct‐FePt nanoparticles. These core/shell nanoparticles are strongly coupled by exchange interactions and their magnetic properties can be rationally tuned by the shell thickness of the soft phase. This work provides an ideal model system for the study of exchange coupling at the nanoscale, which will be essential for building superstrong magnets for various permanent magnet applications in the future.  相似文献   

14.
建立固相萃取与电感耦合等离子体原子发射光谱法(ICP–AES)测定环境水样中Cr(Ⅲ)含量的方法。合成了功能化铁氧体磁性材料作为固相萃取剂,优化了固相萃取条件。当样品溶液的p H值为2.5时,固相萃取剂能在5 min内完成Cr(Ⅲ)的富集。使用1 mol/L HNO3在3 min内即可解吸附分离Cr(Ⅲ),饱和吸附容量为15.2μg/mg,研究了共存离子的影响。Cr(Ⅲ)含量在1~50μg/L范围内与发射光谱强度呈良好的线性关系,线性相关系数为0.999 9,检出限为0.09μg/L,测定结果的相对标准偏差为2.2%(n=8),回收率为97.7%~104.8%。该方法高效、快速,测定结果准确可靠,可用于测定环境水样品中的痕量Cr(Ⅲ)。  相似文献   

15.
The room temperature intercalation of Cr2Ti3Se8 with butyl lithium yields a phase mixture of the starting material and of the new trigonal phase with composition Li0.4Cr0.5Ti0.75Se2. The phase pure fully intercalated trigonal phase is obtained at elevated temperature (80 degrees C) with the final composition Li0.62Cr0.5Ti0.75Se2. The line profile analysis (LPA) of the powder patterns shows that pronounced strain occurs in the intercalated material. The deintercalation of the material is realized by treatment of the fully intercalated sample with distilled water leading to the composition Li0.15Cr0.5Ti0.75Se2. The intercalation is accompanied by an electron transfer from the guest Li to the host material, and as a consequence significant changes of the interatomic distances are observed. The local environment and the dynamics of the Li+ ions in the fully intercalated sample were studied with 7Li magic angle spinning (MAS) NMR investigations. These reveal different environments of transition metal neighbors for the Li sites and a high mobility of the Li ions. Magnetic measurements show that in the pristine material antiferromagnetic interactions are dominating (theta = -113.5 K) with no long-range order at low temperatures. The magnetic ground state is characterized by a spin-glass behavior. With increasing Li content the antiferromagnetic character vanishes progressively, and the fully intercalated phase exhibits a positive Weiss constant (theta = 12 K) indicating dominating ferromagnetic exchange interactions; i.e., the magnetic properties can be significantly altered by lithiation. The interpretation of our experimental findings is supported by the results of accompanying band structure calculations done within the framework of local spin density functional theory. These demonstrate in particular the role of the charge transfer between the constituents as a function of the Li concentration and its impact on the exchange coupling.  相似文献   

16.
The sign of the exchange interaction in dinuclear Cr(III)Ni(II) complexes was analyzed using theoretical methods based on density functional theory. This approach allowed us to reproduce the experimental J values correctly. In addition, the Kahn-Briat model, which uses the square of the sum of the overlaps between the magnetic orbitals to correlate with the exchange coupling constant, provided a reasonable correlation between the different types of Cr(III)Ni(II) complexes when using biorthogonalized orbitals. We also examined the exchange interactions in two polynuclear Cr(III)Ni(II) complexes: a Cr(7)Ni ring and an S-shaped Cr(12)Ni(3) complex. We concluded that both systems exhibit antiferromagentic interactions, and that the Cr(III)···Ni(II) interactions are similar in value to the C(III)···Cr(III) exchange couplings.  相似文献   

17.
魏燕芳 《广州化学》2010,35(4):29-34
用壳聚糖包埋磁流体,用戊二醛交联制成磁性壳聚糖微球,并用红外光谱表征其结构。用制备的磁性壳聚糖微球吸附Cr(Ⅵ)离子,考察了其对Cr(Ⅵ)离子的吸附性能;探讨了吸附时间、溶液pH值、吸附剂用量、温度、Cr(Ⅵ)起始浓度以及其他离子存在对Cr(Ⅵ)离子去除率的影响。实验结果表明,磁性壳聚糖微球吸附Cr(Ⅵ)离子的最佳条件为:吸附平衡时间40 min,最佳吸附pH值6左右,磁性壳聚糖微球用量10 mg,温度升高有利于提高磁性壳聚糖微球的吸附效率,Cr(Ⅵ)离子起始质量浓度为12μg/mL,无机盐的存在引起磁性壳聚糖微球的吸附性能降低。并且考察了吸附剂的再生性能,实验结果表明磁性壳聚糖微球具有良好的重复使用性。  相似文献   

18.
We report the synthesis and structural characterisation of a family of finite molecular chains, specifically [{[R(2)NH(2)](3)[Cr(6)F(11)(O(2)CCMe(3))(10)]}(2)] (in which R=nPr 1, Et 2, nBu 3), [{Et(2)NH}(2){[Et(2)NH(2)](3)[Cr(7)F(12)(O(2)CCMe(3))(12)][HO(2)CCMe(3)](2)}(2)] (4), [{[Me(2)NH(2)](3)[Cr(6)F(11)(O(2)CCMe(3))(10)]2.5 H(2)O}(4)] (5) and [{[iPr(2)NH(2)](3)[Cr(7)F(12)(O(2)CCMe(3))(12)]}(2)] (6). The structures all contain horseshoes of chromium centres, with each Cr...Cr contact within the horseshoe bridged by a fluoride and two pivalates. The horseshoes are linked through hydrogen bonds to the secondary ammonium cations in the structure, leading to di- and tetra-horseshoe structures. Through magnetic measurements and inelastic neutron scattering studies we have determined the exchange coupling constants in 1 and 6. In 1 it is possible to distinguish two exchange interactions, J(A)=-1.1 meV and J(B)=-1.4 meV; J(A) is the exchange interactions at the tips of the horseshoe and J(B) is the exchange within the body of the horseshoe (1 meV=8.066 cm(-1)). For 6 only one interaction was needed to model the data: J=-1.18 meV. The single-ion anisotropy parameters for Cr(III) were also derived for the two compounds as: for 1, D(Cr)=-0.028 meV and |E(Cr)|=0.005 meV; for 6, D(Cr)=-0.031 meV. Magnetic-field-dependent inelastic neutron scattering experiments on 1 allowed the Zeeman splitting of the first two excited states and level crossings to be observed. For the tetramer of horseshoes (5), quantum Monte Carlo calculations were used to fit the magnetic susceptibility behaviour, giving two exchange interactions within the horseshoe (-1.32 and -1.65 meV) and a weak inter-horseshoe coupling of +0.12 meV. Multi-frequency variable-temperature EPR studies on 1, 2 and 6 have also been performed, allowing further characterisation of the spin Hamiltonian parameters of these chains.  相似文献   

19.
The effect of magnetic exchange, double exchange, vibronic coupling, and asymmetry on magnetic properties of d2d3 systems is discussed. The temperature‐dependent magnetic moment was calculated with the semiclassical adiabatic approach. The results show that the vibronic coupling from the out‐of‐phase breathing vibration on the metal sites (Piepho, Krausz, and Schatz [PKS] model) and the vibronic coupling from the stretching vibration between the metal sites (P model) favor the localization and delocalization of the “extra” electron in mixed‐valence dimers, respectively. The magnetic properties are determined by the interplay among magnetic exchange, double exchange, and vibronic coupling. The results obtained by analyzing d2d3 systems can be generalized to other full delocalized dinuclear mixed valence systems with a unique transferable electron. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

20.
In this study, a magnetic metal–organic framework was synthesized simply and utilized in the dispersive magnetic solid‐phase extraction of five phthalate esters followed by their determination by gas chromatography with mass spectrometry. First, MIL‐101(Cr) was prepared hydrothermally in water medium without using highly corrosive hydrofluoric acid, utilizing an autoclave oven heat supply. Afterward, Fe3O4 nanoparticles were decorated into the matrix of MIL‐101(Cr) to fabricate magnetic MIL‐101 nanocomposite. The nanocomposite was characterized by various techniques. The parameters affecting dispersive magnetic solid‐phase extraction efficiency were optimized and obtained as: a sorbent amount of 15 mg; a sorption time of 20 min; an elution time of 5 min; NaCl concentration, 10% w/v; type and volume of the eluent 1 mL n‐hexane/acetone (1:1 v/v). Under the optimum conditions detection limits and linear dynamic ranges were achieved in the range of 0.08–0.15 and 0.5–200 μg/L, respectively. The intra‐ and interday RSD% values were obtained in the range of 2.5–9.5 and 4.6–10.4, respectively. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of the model analytes in water samples, and human plasma in the range of microgram per liter and satisfactory results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号