首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time, two different sets of polytype Thue–Morse multilayered porous silicon structures are studied to investigate the reflection of light in aperiodic dielectrics. The optical response of the samples was studied before and after oxidation. The results were compared with the classical periodic structure, and an enhancement in the number of photonic bandgaps with a significant blue shift in reflectance peaks, in some of the structures, were observed. Numerical simulation along the lines of the transfer matrix approach is also presented.  相似文献   

2.
The influence of applied voltage on photoluminescence (PL) in porous silicon was studied. A strong PL band around 680 nm was observed when excited by a 300 nm ultraviolet light with no voltage applied, but upon increasing the bias voltage, a strong and progressive decrease of the PL intensity was observed leading finally to a complete quenching of the emitted light at 1.80 V. The peak position of the emission appears to be stable. This effect is completely irreversible, and the spectra depend on the increased voltage to the sample and corresponding temperature increase. Nonradiative recombination resulting from the thermal oxidation was suggested to be responsible for the quenching.  相似文献   

3.
Er3+、In3+等金属离子对多孔硅光致发光性质的影响   总被引:2,自引:0,他引:2  
用阳极腐蚀的方法制备了多孔硅样品,用电化学方法在多孔硅中注入Er^3+、In^3+等金属离子,并对注入离子后多孔硅的光致荧光光谱进行了研究,结果表明:注入Er^3+及In^3+后的多孔硅在588nm处的妇光峰强度大大增加,同时发光峰稍有展宽。随着离子注入时间的增长,强度继续增加,但当离子溶液浓度一定时,这种增强对时间具有饱和性。  相似文献   

4.
The method of lanthanum fluoride passivating layer synthesis in the matrix of porous silicon by successive ionic layer deposition was elaborated and optimized. Luminescence and FTIR of obtained structures demonstrate the crucial role of the chemical composition of silicon nanocrystallite surface in the formation of radiative recombination channels and in the stability of porous silicon photoluminescence. The combination of high optical transparency of LaF3 layers and low recombination losses in silicon covered with such layers allows to recommend the lanthanum fluoride film as an effective passivating coating for silicon optoelectronics devices.  相似文献   

5.
Porous silicon reflection interference filters of Bragg type consists of up to 40 quarter wave layers with alternating high- and low-refraction index. The refraction index depends on the porosity of the silicon. The reflection wavelength can vary over a wide range and depends on the thickness and refraction index of the porous layers. A laterally continuously varying wavelength with linear profile of the filter can be achieved by manipulating the porosity and thickness of the silicon in the lateral direction. Our approach is to vary the Fermi level laterally by applying a potential parallel to the surface of the wafer. The slope of the Fermi level is easily controlled by the magnitude of the potential. The lateral current density and thus the porosity and thickness is related to the potential difference between the laterally varying Fermi level and the potential induced by the counter electrode. This relation is the well-known current–voltage characteristic of a Silicon hydrofluoric acid contact. The linearity of the etch profile across the wafer is demonstrated and the properties of preliminary reflection filters are shown.  相似文献   

6.
The properties of porous silicon prepared at different illumination and electrochemical conditions were studied. The preparation procedure was based on the electrochemical etching in HF containing electrolyte. In the dissolution of n-type silicon, an external source of light is necessary to obtain a sufficient holes flux density. Here, illumination was applied from the backside of the wafer (the side not immersed in the electrolyte), from topside (the side immersed in the electrolyte), and for the highly doped silicon, etching proceeds without illumination. The electrolyte contains HF in the range 2–50 wt%. The highest current density flows with topside assisted illumination. Backside illumination and etching in the dark resulted in a reduction in the current density. In the dark the current density significantly increased at a higher anodic bias. These conditions gave rise to pores formation with a diameter from 20 nm up to 3 μm. The smallest pore size was obtained for highly doped n-Si (111) wafers, etched without illumination. The present paper confirms the possibility of porous silicon formation in the dark and with backside illumination, these being alternative methods for topside assisted illumination etching methods.  相似文献   

7.
The local structure of porous silicon has been studied exciting its optical luminescence by X-rays (XEOL). The photoluminescence yield and the total electron yield (TEY), recorded simultaneously as a function of the X-ray energy at the Si K edge, give rise to the extended X-ray absorption fine structures (EXAFS). Analysis of EXAFS data confirms that the optical luminescence of porous Si originates from the nanocrystalline cores and shows that XEOL–EXAFS and TEY–EXAFS are sensitive to different Si local environment. It can be assumed that XEOL–EXAFS is related only to the light emitting sites while TEY–EXAFS is sampling both luminescent and non-luminescent Si sites.  相似文献   

8.
We studied the influence of the thickness and porosity of the buffer layer on the guiding properties of oxidized porous silicon waveguides (OPSWG). It is demonstrated how a modified anodization process acts on the porosity of the final oxidized porous silicon. In this way, it is possible to control the refractive index jump between the core of OPSWG made of compact silicon dioxide and the bottom buffer layer made of porous silicon dioxide. The adoption of a double-step anodization process decreases the propagation losses to 0.5 dB/cm against the 8 dB/cm measured for the waveguide realized using a single-step anodization. The main reason seems not to be the increase of the difference of refractive index values but the more homogeneous buffer layer obtained along the core of the waveguide. This homogeneous layer permits a better lateral confinement of the light as demonstrated by spatial refractive index profile measurement.  相似文献   

9.
Photoluminescence measurements are carried out on porous silicon layers. We show the enhancement and stabilization of the luminescence when depositing a silicon nitride layer on top of porous layers.We also demonstrate that direct- and remote-plasma nitridation are good ways to reduce the ageing effect of porous silicon layers due to a passivation of dangling bonds.  相似文献   

10.
Planar and buried channel porous silicon waveguides (WG) were prepared from p+-type silicon substrate by a two-step anodization process. Erbium ions were incorporated into pores of the porous silicon layers by an electrochemical method using ErCl3-saturated solution. Erbium concentration of around 1020 at/cm3 was determined by energy-dispersive X-ray analysis performed on SEM cross-section. The luminescence properties of erbium ions in the IR range were determined and a luminescence time decay of 420 μs was measured. Optical losses were studied on these WG. The increased losses after doping were discussed.  相似文献   

11.
本文对刚制备的以及分别经以下三种情况:1.样品在1大气压的氧气中经激光(Ar~+激光器的48.80nm线,功率密度为1.77W/cm~2)连续照射1小时;2.样品在1大气压的氧气中在没有激光照射的情况下保持1小时;3.样品在1.3×10~2Pa真空度下用激光连续照射1小时处理后的多孔硅在室温下进行了光致发光谱和傅里叶变换红外吸收测量,研究了处理前后光谱的变化。实验发现经第一种情况处理后光致发光峰位蓝移了约0.1eV,发光强度衰减了二十几倍,相应的其红外光谱中与氧有关的吸收峰强度大幅度增长,而经第二,三两种情况处理后它们的光致发光及红外吸收谱则无大的变化。研究表明在氧气中激光辐照能大大加速多孔硅内表面的氧化。我们认为很可能是多孔硅内表面的氧化作用使光致发光峰位蓝移,由氧化作用产生的非辐射复合中心导致光致发光效率的下降。  相似文献   

12.
The spontaneous emission of a material can be controlled by placing it in a micron-sized optical cavity. In this paper we introduce the subject and we discuss the realization, the physics and perspective applications of all porous silicon microcavities. The emission properties of the cavities have been characterized as a function of the temperature, of the excitation power and of the response time. Coupled microcavities are demonstrated. Modeling of the structure have been performed on the basis of a transfer matrix approximation.  相似文献   

13.
The properties and origins of the red, blue and infrared photoluminescence bands of porous silicon are reviewed and discussed in the light of the models that have been proposed to explain the experimental and theoretical results. The red band is due to quantum confinement possibly supplemented by surface states; the blue band is linked to the presence of silicon dioxide; the infrared band is correlated with dangling bonds and bandgap luminescence in large crystallites. The fabrication and characterization of light-emitting devices made of porous silicon are reported and discussed with respect to critical issues such as the device stability, efficiency, modulation speed, emission wavelength, and compatibility with microelectronic processing.  相似文献   

14.
The photoluminescence (PL) of the annealed and amorphous silicon passivated porous silicon with blue emission has been investigated. The N-type and P-type porous silicon fabricated by electrochemical etching was annealed in the temperature range of 700-900 °C, and was coated with amorphous silicon formed in a plasma-enhanced chemical vapor deposition (PECVD) process. After annealing, the variation of PL intensity of N-type porous silicon was different from that of P-type porous silicon, depending on their structure. It was also found that during annealing at 900 °C, the coated amorphous silicon crystallized into polycrystalline silicon, which passivated the irradiative centers on the surface of porous silicon so as to increase the intensity of the blue emission.  相似文献   

15.
A three-dimensional silicon based nanodevice mainly consisting of two conductive silicon cantilevers was fabricated out of silicon-on-insulator material by electron beam lithography, reactive ion etching, and fluoride based wet chemical etching. One of the cantilevers is bent and sticks to the silicon substrate while the other one is freely suspended. We observed electroluminescence in the visible range when a voltage of any polarity is dropped across both levers. The measured spectra covered the range 400–950 nm peaking at about 650 nm. The current applied to the device could tune the intensity of the electroluminescence spectrum. Light powers ranging from 160 fW to some pW were measured at frequencies up to 17 kHz. The origin of the electroluminescence is discussed in comparison to porous silicon and spark-processed silicon.  相似文献   

16.
Porous silicon (PS) surfaces were fabricated by electrochemical etching for both sides of the Si wafer. The objective of the present study is to investigate the PS effect on performance of silicon solar cells. Moreover, enhancement of solar cell efficiency can be obtained by manipulating of the reflected mirrors, and the process is very promising for solar cells manufacturing due to its simplicity, lower cost and suitability for mass production. The surface of PS is observed to have been discrete pores with smooth walls, and with short branches pores for the polished wafer side. In contrast, the etched backside of the wafer was observed to have bigger pore size than the etched polished side, and pores on the surface are in random location. PS formed on the both sides has lower reflectivity value in comparison to the other researcher group. The increase in efficiency of solar cell fabricated with PS formed on both sides of the wafer were extremely observed in comparison to one side PS and bulk silicon solar cells respectively. Solar cell fabricated shows that the conversion efficiency increased to 14.5% in comparison to unetched sample. The porous surface texturing properties could enhance and increased the conversion efficiency of silicon solar cells, these results also showed that the efficiency with this procedure is more promising in comparison to other solar cells, which are fabricated under similar conditions.  相似文献   

17.
Porous silicon layers were elaborated by anodization of highly resistive p-type silicon in HF/ethylene glycol solution under front side illumination, as a function of etching time, HF concentration and illumination intensity. The porous layer morphology was investigated by scanning electron microscopy (SEM). The illumination during anodization was provided by a tungsten lamp or lasers of different wavelengths. Under anodization, a microporous layer is formed up to a critical thickness above which macropores appear. Under illumination, the instability limiting the growth of the microporous layer occurs at a critical thickness much larger than in the dark. This critical thickness depends on HF concentration, illumination wavelength and intensity. These non-trivial dependencies are rationalized in a model in which photochemical etching in the electrochemically formed porous layer plays the central role.  相似文献   

18.
Polarization phenomena in the optical properties of porous silicon   总被引:1,自引:0,他引:1  
We examine the polarization memory effect for porous Si excited by linearly polarized light. The various observations for the red-luminescing, slow band are discussed in the general framework of particle shape asymmetry. We show that because of the intrinsically nonlinear luminescence response, measurement parameters influence the polarization response. The preparation of porous Si with photoassisted etching is found to control the polarization retention parameter ρ. Using linearly polarized light during etching produces in-plane asymmetries. We find a substantial ρ-anisotropy linked to crystal symmetry planes and axes as a consequence of anisotropic etching. The effects are discussed with reference to current models of the light emission mechanism.  相似文献   

19.
Ellipsometric study of refractive index anisotropy in porous silicon   总被引:1,自引:0,他引:1  
《Journal of luminescence》1998,80(1-4):183-186
Porous Si layers of different thicknesses were prepared by anodising p+-type Si substrates with a resistivity of 0.01 Ω cm. The porosity of the samples ranged from 23% to 62%. The refractive index values for the ordinary and extraordinary rays were determined by multiple angle of incidence ellipsometry, from which an optical anisotropy parameter varying from 13% to 20% was obtained. The porous Si layers were modelled as uniaxially anisotropic films on an isotropic substrate, with an optical axis perpendicular to the sample surface. The morphological anisotropy which is typical for the p+-type porous Si with a predominating cylindrical geometry is responsible for these optical properties. All the porous Si layers studied were found to be optically negative.  相似文献   

20.
We report on ionoluminescence investigations of porous Si prepared from the p+-type Si, which exhibited, after prolonged ambient air exposure, moderate photon emission with a maximum in the red–orange region. In an attempt to activate a shorter wavelength emission, the samples were implanted with 225 keV O+ ions at the dose of 1×1017 cm−2. The strong blue band at 2.7 eV, well known in silica, has emerged in the ionoluminescence spectra following the oxygen implantation. The results of the comparative ionoluminescence experiments, performed on both porous Si and two forms of silica, show the important role of SiO2 defect-related states in ion-induced optical emission from porous Si.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号