首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

2.
Approximating the long-distance gluon dynamics ofSU(3)colour by colour-dielectric block-spin variables, we obtain an effective QCD theory of a scalar colour-dielectric field and a massive colour-bleached gluon field coupled to light quarks. The massive vector field produces a strong attraction betweenq \(\bar q\) pairs, which leads toq \(\bar q\) condensation when the colour-dielectric field becomes small. We calculate \(\left\langle {\bar \psi \psi } \right\rangle\) and the pion decay constantf n as a function of the dielectric field expectation value, by evaluating the fermion determinant in a derivative expansion, and integrating out the bosonic variables. We find that the effective quark-gluon coupling,α s eff , including quark effects, is large on the surface of bags, where \(\left\langle {\bar \psi \psi } \right\rangle\) ±0, but decreases inside hadronic bags, where | \(\left\langle {\bar \psi \psi } \right\rangle\) | is decreasing.  相似文献   

3.
L P Pitaevskii 《Pramana》1987,28(5):589-589
Landau’s criterion plays an important role in the theory of superfluidity. According to this criterion, superfluid motion is possible if \(\tilde \varepsilon \left( p \right) \equiv \varepsilon \left( p \right) + pV > 0\) along the curve of the spectrum?(p) of excitations. For4He it means thatv<v c,v c≈60 m/sec.v s is equal to the tangent of the slope to the roton part of the spectrum. The question of what happens to the liquid when this velocity is exceeded, as far as we know, remains unclear. We shall show that for small excesses abovev c a one-dimensional periodic structure appears in the helium. A wave vector of this structure oriented opposite to the flow and equal toρ c/h whereρ c is the momentum at the tangent point. The quantity \(\tilde \varepsilon \left( p \right)\) is the energy of excitation in the liquid moving with velocity v. Inequality of Landau ensures that \(\tilde \varepsilon \) is positive. If \(\tilde \varepsilon \) becomes negative, then the boson distribution function \(n\left( {\tilde \varepsilon } \right)\) becomes negative, indicating the impossibility of thermodynamic equilibrium of the ideal gas of rotons; therefore the interaction between them must be taken into account. The final form of the energy operator is $$\hat H = \int {\left\{ {\hat \psi + \tilde \varepsilon \left( p \right)\hat \psi + \tfrac{g}{2}\hat \psi + \hat \psi + \hat \psi \hat \psi } \right\}} d^3 x, g \sim 2 \cdot 10^{ - 38} erg.cm.$$ Then we can seek the rotonψ-operator in the formψ=ηexp(i p c r/h), determiningη from the condition that the energy is minimized. The result is (η)2=(v?v c)ρ c/g, forv>v c. The plane waveψ corresponds to a uniform distribution of rotons. It leads, however, to a spatial modulation of the density of the helium, since the density operator \(\hat n\) contains a term which is linear in the operator \(\psi :\hat n = n_0 + \left( {n_0 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} {A \mathord{\left/ {\vphantom {A {\hat \psi \to \hat \psi ^ + }}} \right. \kern-0em} {\hat \psi \to \hat \psi ^ + }}\) ), where |A|2ρ c 2 /2m?(ρ c). Finally we find that the density of helium is modulated according to the law $$\frac{{n - n_0 }}{{n_0 }} = \left[ {\frac{{\left| A \right|^2 \left( {\nu - \nu _c } \right)\rho _c }}{{n_0 g}}} \right]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \sin \rho _c x \approx 2,6\left[ {\frac{{\nu - \nu _c }}{{\nu _c }}} \right]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \sin \rho _c x$$ . This phenomenon can be observed, in principle, in the experiments on scattering ofx-rays in moving helium.  相似文献   

4.
The general theory of inhomogeneous mean-field systems of Raggio and Werner provides a variational expression for the (almost sure) limiting free energy density of the Hopfield model $$H_{N,p}^{\{ \xi \} } (S) = - \frac{1}{{2N}}\sum\limits_{i,j = 1}^N {\sum\limits_{\mu = 1}^N {\xi _i^\mu \xi _j^\mu S_i S_j } } $$ for Ising spinsS i andp random patterns ξμ=(ξ 1 μ 2 μ ,...,ξ N μ ) under the assumption that $$\mathop {\lim }\limits_{N \to \gamma } N^{ - 1} \sum\limits_{i = 1}^N {\delta _{\xi _i } = \lambda ,} \xi _i = (\xi _i^1 ,\xi _i^2 ,...,\xi _i^p )$$ exists (almost surely) in the space of probability measures overp copies of {?1, 1}. Including an “external field” term ?ξ μ p hμμξ i=1 N ξ i μ Si, we give a number of general properties of the free-energy density and compute it for (a)p=2 in general and (b)p arbitrary when λ is uniform and at most the two componentsh μ1 andh μ2 are nonzero, obtaining the (almost sure) formula $$f(\beta ,h) = \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } + h^{\mu _2 } ) + \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } - h^{\mu _2 } )$$ for the free energy, wheref cw denotes the limiting free energy density of the Curie-Weiss model with unit interaction constant. In both cases, we obtain explicit formulas for the limiting (almost sure) values of the so-called overlap parameters $$m_N^\mu (\beta ,h) = N^{ - 1} \sum\limits_{i = 1}^N {\xi _i^\mu \left\langle {S_i } \right\rangle } $$ in terms of the Curie-Weiss magnetizations. For the general i.i.d. case with Prob {ξ i μ =±1}=(1/2)±?, we obtain the lower bound 1+4?2(p?1) for the temperatureT c separating the trivial free regime where the overlap vector is zero from the nontrivial regime where it is nonzero. This lower bound is exact forp=2, or ε=0, or ε=±1/2. Forp=2 we identify an intermediate temperature region between T*=1?4?2 and Tc=1+4?2 where the overlap vector is homogeneous (i.e., all its components are equal) and nonzero.T * marks the transition to the nonhomogeneous regime where the components of the overlap vector are distinct. We conjecture that the homogeneous nonzero regime exists forp≥3 and that T*=max{1?4?2(p?1),0}.  相似文献   

5.
Saturating superconvergence sum rules inNγ→Δπ scattering byN andΔ, we are able to relate the (isoscalar) dipole magnetic moment \(\tilde \mu _\Delta\) and the quadrupole electric moment \(\tilde Q_\Delta\) of the isobarΔ to the electric charge \(\tilde Z_\Delta\) and the dipole magnetic momentμ N of the nucleonN. The numerical results are: \(\tilde \mu _\Delta \equiv \mu _{\Delta ^ + } + \mu _{\Delta ^0 } = 3.26\) (in unitse/2M)=2.48 (in unitse/2m), and \(\tilde Q_\Delta \equiv Q_{\Delta ^ + } + Q_{\Delta ^0 } = 0.050\) (in unitse/M 2)=0.029 (in unitse/m 2), whereM(m) is the mass ofΔ(N). Neglecting the pion mass and takingM=m,μ n /μ p =?2/3, we get theSU 6 result μΔ+=μ p .  相似文献   

6.
Bounds are obtained on the unintegrated density of states ρ(E) of random Schrödinger operatorsH=?Δ + V acting onL 2(? d ) orl 2(? d ). In both cases the random potential is $$V: = \sum\limits_{y \in \mathbb{Z}^d } {V_y \chi (\Lambda (y))}$$ in which the \(\left\{ {V_y } \right\}_{y \in \mathbb{Z}^d }\) areIID random variables with densityf. The χ denotes indicator function, and in the continuum case the \(\left\{ {\Lambda (y)} \right\}_{y \in \mathbb{Z}^d }\) are cells of unit dimensions centered ony∈? d . In the finite-difference case Λ(y) denotes the sitey∈? d itself. Under the assumptionf ∈ L 0 1+? (?) it is proven that in the finitedifference casep ∈ L (?), and that in thed= 1 continuum casep ∈ L loc (?).  相似文献   

7.
We study the one-dimensional random dimer model, with Hamiltonian H ω =Δ+V ω , where for all x $\mathbb{Z}$ , V ω(2x)=V ω(2x+1) and where the V ω(2x) are i.i.d. Bernoulli random variables taking the values ±V, V>0. We show that, for all values of Vand with probability one in ω, the spectrum of His pure point. If V≤1 and V≠1/ $\sqrt 2$ , the Lyapunov exponent vanishes only at the two critical energies given by EV. For the particular value V=1/ $\sqrt 2$ , respectively, V= $\sqrt 2$ , we show the existence of new additional critical energies at E=±3/ $\sqrt 2$ , respectively, E=0. On any compact interval Inot containing the critical energies, the eigenfunctions are then shown to be semi-uniformly exponentially localized, and this implies dynamical localization: for all q>0 and for all ψ $\ell$ 2( $\mathbb{Z}$ ) with sufficiently rapid decrease $${\mathop {\sup }\limits_t} r_{\psi ,I}^{\left( q \right)} {\kern 1pt} \left( t \right): = {\mathop {\sup }\limits_t} \left\langle {P_I \left( {H\omega } \right)\psi _t ,\left| X \right|^q P_I \left( {H\omega } \right)\psi _t } \right\rangle < \infty $$ Here $\psi _t = e^{- iH_{\omega ^t}} \psi$ , and P I(H ω) is the spectral projector of H ωonto the interval I. In particular, if V>1 and V $\sqrt 2$ , these results hold on the entire spectrum [so that one can take I=σ(H ω)].  相似文献   

8.
I. I. Guseinov 《Few-Body Systems》2013,54(11):1773-1780
By the use of complete orthonormal sets of ${\psi ^{(\alpha^{\ast})}}$ -exponential type orbitals ( ${\psi ^{(\alpha^{\ast})}}$ -ETOs) with integer (for α * = α) and noninteger self-frictional quantum number α *(for α * ≠ α) in standard convention introduced by the author, the one-range addition theorems for ${\chi }$ -noninteger n Slater type orbitals ${(\chi}$ -NISTOs) are established. These orbitals are defined as follows $$\begin{array}{ll}\psi _{nlm}^{(\alpha^*)} (\zeta ,\vec {r}) = \frac{(2\zeta )^{3/2}}{\Gamma (p_l ^* + 1)} \left[{\frac{\Gamma (q_l ^* + )}{(2n)^{\alpha ^*}(n - l - 1)!}} \right]^{1/2}e^{-\frac{x}{2}}x^{l}_1 F_1 ({-[ {n - l - 1}]; p_l ^* + 1; x})S_{lm} (\theta ,\varphi )\\ \chi _{n^*lm} (\zeta ,\vec {r}) = (2\zeta )^{3/2}\left[ {\Gamma(2n^* + 1)}\right]^{{-1}/2}x^{n^*-1}e^{-\frac{x}{2}}S_{lm}(\theta ,\varphi ),\end{array}$$ where ${x=2\zeta r, 0<\zeta <\infty , p_l ^{\ast}=2l+2-\alpha ^{\ast}, q_l ^{\ast}=n+l+1-\alpha ^{\ast}, -\infty <\alpha ^{\ast} <3 , -\infty <\alpha \leq 2,_1 F_1 }$ is the confluent hypergeometric function and ${S_{lm} (\theta ,\varphi )}$ are the complex or real spherical harmonics. The origin of the ${\psi ^{(\alpha ^{\ast})} }$ -ETOs, therefore, of the one-range addition theorems obtained in this work for ${\chi}$ -NISTOs is the self-frictional potential of the field produced by the particle itself. The obtained formulas can be useful especially in the electronic structure calculations of atoms, molecules and solids when Hartree–Fock–Roothan approximation is employed.  相似文献   

9.
We prove that for a bounded domainD ?R n withC 2 boundary and \(q \in K_n^{loc} (n \geqq 3) if E^x \exp \int\limits_0^{\tau _D } {q(x_t )dt} \mathop \ddag \limits_--- \infty \) inD, then $$\mathop {\sup }\limits_{\mathop {x \in D}\limits_{z \in \partial D} } E_z^x \exp \int\limits_0^{\tau _D } {q(x_t )dt}< + \infty $$ ({x t : Brownian motion}) The important corollary of this result is that if the Schrödinger equation Δ/2u+qu=0 has a strictly positive solution onD, then for anyD 0 ? ?D, there exists a constantC=C(n,q,D,D 0) such that for anyf εL 1(?D, σ), (σ: area measure on ?D) we have $$\mathop {\sup |}\limits_{x \in D_0 } u_f (x)| \mathop< \limits_ = C\int\limits_{\partial D} {|f(y)|\sigma (dy)} $$ whereu f is the solution of the Schrödinger equation corresponding to the boundary valuef. To prove the main result we set up the following estimate inequalities on the Poisson kernelK(x,z) corresponding to the Laplace operator: $$C_1 \frac{{d(x,\partial D)}}{{|x - z|^n }}\mathop< \limits_ = K(x,z)\mathop< \limits_ = C_2 \frac{{d(x,\partial D)}}{{|x - z|^n }},x \in D,z \in \partial D$$ whereC 1 andC 2 are constants depending onn andD.  相似文献   

10.
We study the zero-temperature behavior of the Ising model in the presence of a random transverse field. The Hamiltonian is given by $$H = - J\sum\limits_{\left\langle {x,y} \right\rangle } {\sigma _3 (x)\sigma _3 (y) - \sum\limits_x {h(x)\sigma _1 (x)} } $$ whereJ>0,x,y∈Z d, σ1, σ3 are the usual Pauli spin 1/2 matrices, andh={h(x),x∈Z d} are independent identically distributed random variables. We consider the ground state correlation function 〈σ3(x3(y)〉 and prove:
  1. Letd be arbitrary. For anym>0 andJ sufficiently small we have, for almost every choice of the random transverse fieldh and everyxZ d, that $$\left\langle {\sigma _3 (x)\sigma _3 (y)} \right\rangle \leqq C_{x,h} e^{ - m\left| {x - y} \right|} $$ for allyZ d withC x h <∞.
  2. Letd≧2. IfJ is sufficiently large, then, for almost every choice of the random transverse fieldh, the model exhibits long range order, i.e., $$\mathop {\overline {\lim } }\limits_{\left| y \right| \to \infty } \left\langle {\sigma _3 (x)\sigma _3 (y)} \right\rangle > 0$$ for anyxZ d.
  相似文献   

11.
The asymmetry parameters \(\alpha _{\beta ^ \mp } \) of the beta-ray emitted from aligned12B and12N are evaluated as a function of the energy. The agreement with experimental differential data is excellent for both \(\alpha _{\beta ^ - } \) (W) and \(\alpha _{\beta ^ + } \) (W). This work confirms, using available nuclear model information, that no induced pseudotensor (IPT) interaction is required for a correct theoretical interpretation of the data. An upper limit for the IPT coupling constantf T is determined from a simultaneous fit of \(\alpha _{\beta ^ - } \) (W) and \(\alpha _{\beta ^ + } \) (W).  相似文献   

12.
We consider the nonlinear elliptic degenerate equation (1) $$ - x^2 \left( {\frac{{\partial ^2 u}}{{\partial x^2 }} + \frac{{\partial ^2 u}}{{\partial y^2 }}} \right) + 2u = f(u)in\Omega _a ,$$ where $$\Omega _a = \left\{ {(x,y) \in \mathbb{R}^2 ,0< x< a,\left| y \right|< a} \right\}$$ for some constanta>0 andf is aC functions on ? such thatf(0)=f′(0)=0. Our main result asserts that: ifuC \((\bar \Omega _a )\) satisfies (2) $$u(0,y) = 0for\left| y \right|< a,$$ thenx ?2 u(x,y)∈C \(\left( {\bar \Omega _{a/2} } \right)\) and in particularuC \(\left( {\bar \Omega _{a/2} } \right)\) .  相似文献   

13.
If for a relativistic field theory the expectation values of the commutator (Ω|[A (x),A(y)]|Ω) vanish in space-like direction like exp {? const|(x-y 2|α/2#x007D; with α>1 for sufficiently many vectors Ω, it follows thatA(x) is a local field. Or more precisely: For a hermitean, scalar, tempered fieldA(x) the locality axiom can be replaced by the following conditions 1. For any natural numbern there exist a) a configurationX(n): $$X_1 ,...,X_{n - 1} X_1^i = \cdot \cdot \cdot = X_{n - 1}^i = 0i = 0,3$$ with \(\left[ {\sum\limits_{i = 1}^{n - 2} {\lambda _i } (X_i^1 - X_{i + 1}^1 )} \right]^2 + \left[ {\sum\limits_{i = 1}^{n - 2} {\lambda _i } (X_i^2 - X_{i + 1}^2 )} \right]^2 > 0\) for all λ i ≧0i=1,...,n?2, \(\sum\limits_{i = 1}^{n - 2} {\lambda _i > 0} \) , b) neighbourhoods of theX i 's:U i (X i )?R 4 i=1,...,n?1 (in the euclidean topology ofR 4) and c) a real number α>1 such that for all points (x):x 1, ...,x n?1:x i U i (X r ) there are positive constantsC (n){(x)},h (n){(x)} with: $$\left| {\left\langle {\left[ {A(x_1 )...A(x_{n - 1} ),A(x_n )} \right]} \right\rangle } \right|< C^{(n)} \left\{ {(x)} \right\}\exp \left\{ { - h^{(n)} \left\{ {(x)} \right\}r^\alpha } \right\}forx_n = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ r \\ \end{array} } \right),r > 1.$$ 2. For any natural numbern there exist a) a configurationY(n): $$Y_2 ,Y_3 ,...,Y_n Y_3^i = \cdot \cdot \cdot = Y_n^i = 0i = 0,3$$ with \(\left[ {\sum\limits_{i = 3}^{n - 1} {\mu _i (Y_i^1 - Y_{i{\text{ + 1}}}^{\text{1}} } )} \right]^2 + \left[ {\sum\limits_{i = 3}^{n - 1} {\mu _i (Y_i^2 - Y_{i{\text{ + 1}}}^{\text{2}} } )} \right]^2 > 0\) for all μ i ≧0,i=3, ...,n?1, \(\sum\limits_{i = 3}^{n - 1} {\mu _i > 0} \) , b) neighbourhoods of theY i 's:V i(Y i )?R 4 i=2, ...,n (in the euclidean topology ofR 4) and c) a real number β>1 such that for all points (y):y 2, ...,y n y i V i (Y i there are positive constantsC (n){(y)},h (n){(y)} and a real number γ(n){(y)∈a closed subset ofR?{0}?{1} with: γ(n){(y)}\y 2,y 3, ...,y n totally space-like in the order 2, 3, ...,n and $$\left| {\left\langle {\left[ {A(x_1 ),A(x_2 )} \right]A(y_3 )...A(y_n )} \right\rangle } \right|< C_{(n)} \left\{ {(y)} \right\}\exp \left\{ { - h_{(n)} \left\{ {(y)} \right\}r^\beta } \right\}$$ for \(x_1 = \gamma _{(n)} \left\{ {(y)} \right\}r\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} } \right),x_2 = y_2 - [1 - \gamma _{(n)} \{ (y)\} ]r\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} } \right)\) and for sufficiently large values ofr.  相似文献   

14.
In the present paper, we study the following scaled nonlinear Schrödinger equation (NLS) in one space dimension: $$ i\frac{\rm d}{{\rm d}t}\psi^{\varepsilon}(t)=-\Delta\psi^{\varepsilon}(t) +\frac{1}{\varepsilon}V\left(\frac{x}{\varepsilon} \right)|\psi^{\varepsilon}(t)|^{2\mu}\psi^{\varepsilon}(t)\quad \varepsilon > 0\,\quad V\in L^1(\mathbb{R},(1+|x|){\rm d}x) \cap L^\infty(\mathbb{R}).$$ This equation represents a nonlinear Schrödinger equation with a spatially concentrated nonlinearity. We show that in the limit \({\varepsilon\to 0}\) the weak (integral) dynamics converges in \({H^1(\mathbb{R})}\) to the weak dynamics of the NLS with point-concentrated nonlinearity: $$ i\frac{{\rm d}}{{\rm d}t} \psi(t) =H_{\alpha} \psi(t) .$$ where H α is the Laplacian with the nonlinear boundary condition at the origin \({\psi'(t,0+)-\psi'(t,0-)=\alpha|\psi(t,0)|^{2\mu}\psi(t,0)}\) and \({\alpha=\int_{\mathbb{R}}V{\rm d}x}\) . The convergence occurs for every \({\mu\in \mathbb{R}^+}\) if V ≥  0 and for every  \({\mu\in (0,1)}\) otherwise. The same result holds true for a nonlinearity with an arbitrary number N of concentration points.  相似文献   

15.
The chiral limit κ ? κ c (β) in lattice gauge theories with Wilson fermions and problems related to near-to-zero (’exceptional’) eigenvalues of the fermionic matrix are studied. For this purpose we employ compact lattice QED in the confinement phase. A new estimator $\tilde m_\pi$ for the calculation of the pseudoscalar mass m π is proposed which does not suffer from ’divergent’ contributions at κ ? κ c (β)We conclude that the main contribution to the pion mass comes from larger modes, and ’exceptional’ eigenvalues play no physical role. The behaviour of the subtracted chiral condensate $\left\langle {\bar \psi \psi } \right\rangle _{subt}$ near κ c (β) is determined. We observe a comparatively large value of $\left\langle {\bar \psi \psi } \right\rangle _{subt} \cdot Z_P^{ - 1}$ , which could be interpreted as a possible effect of the quenched approximation.  相似文献   

16.
The energy behavior of the time-dependent Schrödinger equation $$i\frac{\partial }{{\partial t}}\psi = \frac{{ - 1}}{{2m}}\Delta \psi + \sum\limits_{j = 1}^N {V_j } (x - y_j (t))\psi $$ is discussed, where they j (t) are trajectories of classical scattering. In particular, we prove that the energy cannot become arbitrarily large ast→∞.  相似文献   

17.
The decay modesΣ ± ± γ, Σ +,Σ + →pe + e }- were studied in the 81 cm Saclay hydrogen bubble chamber. In the radiative decayΣ ± ± γ only low momentum pions which stop in the chamber were accepted. We obtain the following branching ratios: (1) $$\frac{{\Gamma {\text{(}}\sum ^{\text{ + }} \to n\pi ^ + \gamma , p_{\pi + }^*< 110{\text{ MeV/c)}}}}{{\Gamma {\text{(}}\sum ^{\text{ + }} \to n\pi ^ + )}} = (2.7 \pm 0.5) \times 10^{ - 4} ,$$ (2) $$\frac{{\Gamma {\text{(}}\sum ^ - \to n\pi ^ - \gamma , p_{\pi - }^*< 110{\text{ MeV/c)}}}}{{\Gamma {\text{(}}\sum ^ - \to n\pi ^ - )}} = (1.0 \pm 0.2) \times 10^{ - 4} ,$$ (3) $$\frac{{\Gamma {\text{(}}\sum ^ + \to p\gamma {\text{)}}}}{{\Gamma {\text{(}}\sum ^ + \to p\pi ^0 )}} = (2.1 \pm 0.3) \times 10^{ - 3} ,$$ (4) $$\frac{{\Gamma {\text{(}}\sum ^ + \to pe^ + e^ - {\text{)}}}}{{\Gamma {\text{(}}\sum ^ + \to p\pi ^0 )}} = (1.5 \pm 0.9) \times 10^{ - 5} .$$ The radiative branching ratios (1) and (2) agree well with theoretical calculations and confirm very strongly the assignmentS wave toΣ ? →nπ ? andP wave toΣ + + decay. The branching ratio (4) is based on 3 events with very low invariant masses of the electron-positron pair, being most probably radiative decays with internal conversion of theγ-ray. Combining (3) and (4) we obtain for the conversion coefficientρ: in agreement with predictions from electrodynamics.  相似文献   

18.
The identity $$\sum\limits_{v = 0} {\left( {\begin{array}{*{20}c} {n + 1} \\ v \\ \end{array} } \right)\left[ {\left( {\begin{array}{*{20}c} {n - v} \\ v \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {n - v} \\ {v - 1} \\ \end{array} } \right)} \right] = ( - 1)^n } $$ is proved and, by means of it, the coefficients of the decomposition ofD 1 n into irreducible representations are found. It holds: ifD 1 n \(\mathop {\sum ^n }\limits_{m = 0} A_{nm} D_m \) , then $$A_{nm} = \mathop \sum \limits_{\lambda = 0} \left( {\begin{array}{*{20}c} n \\ \lambda \\ \end{array} } \right)\left[ {\left( {\begin{array}{*{20}c} \lambda \\ {n - m - \lambda } \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} \lambda \\ {n - m - \lambda - 1} \\ \end{array} } \right)} \right].$$   相似文献   

19.
We use an effective criterion based on the asymptotic analysis of a class of Hamiltonian equations to determine whether they are linearizable on an abelian variety, i.e., solvable by quadrature. The criterion is applied to a system with Hamiltonian $$H = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\sum\limits_{i = 1}^l {p_i^2 } + \sum\limits_{i = 1}^{l + 1} {\exp \left( {\sum\limits_{j = 1}^l {N_{ij} x_j } } \right)} ,$$ parametrized by a real matrixN=(N ij ) of full rank. It will be solvable by quadrature if and only if for allij, 2(N NT) ij (N N T ) jj ?1 is a nonpositive integer, i.e., the interactions correspond to the Toda systems for the Kac-Moody Lie algebras. The criterion is also applied to a system of Gross-Neveu.  相似文献   

20.
We provide lower bounds on the eigenvalue splitting for ?d 2/dx 2+V(x) depending only on qualitative properties ofV. For example, ifV is C on [a, b] andE n ,E n?1 are two successive eigenvalues of ?d 2/dx 2+V withu(a)=u(b)=0 boundary conditions, and if \(\lambda = \mathop {\max }\limits_{E \in (E_{n - 1} ,E_n );x \in (a,b)} |E - V(x)|^{1/2} \) , then $$E_n - E_{n - 1} \geqq \pi \lambda ^2 \exp \left[ { - \lambda (b - a)} \right]$$ . The exponential factor in such bounds are saturated precisely in tunneling examples. Our results arenot restricted toV's of compact support, but only require \(E_n< \mathop {\lim }\limits_{\overline {x \to \infty } } V(x)\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号