首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The reduction of Δ4-androsten-3, 17 dione 1 and of progesterone 2 by nBu4NBH4 is highly chemioselective: in THF only the a-enone moiety is reduced, the saturated C17 or C20 keto group being kept unchanged. When TMEDA is added, saturated alcohols are obtained, without any allylic alcohol when the reaction goes to completion. However this reduction is poorly stereoselective as 70:30 mixtures of A/B cis and trans ring junction compounds are obtained. In MeOH, the saturated keto group is more than 90% selectively reduced. However, the reduction of 1 and 2 by LiBH4 and Zn(BH4)2 is poorly chemioselective. These results are interpreted in terms of competition between electrophilic assistance and steric effects.  相似文献   

2.
A reversal of regioselectivity of LiAlH4 or LiBH4 reduction of 2-cyclohexenone induced by addition of [2.1.1]-cryptand to the reaction medium is accompanied by a rate decrease. In the absence of the cryptand, carbonyl attack predominates (C1:C3 = 86:14 with LiAlH4 in THF). In the presence of the cryptand, double bond attack is favoured (C1:C3= 14:86). This effect is larger with LiAlH4 than with LiBH4. This trend is general in the case of five substituted 2-cyclohexenones. Using 12-crown-4 as a Li+ coordinator, a change in regioselectivity occurs but it is less pronounced than with the cryptand.  相似文献   

3.
C. Jallabert  H. Riviere 《Tetrahedron》1980,36(9):1191-1194
The dehydrogenation of alcohols to the corresponding carbonyl compounds by CuCl/O2/ligand (L) shows relative rates of dehydrogenation according to the type of alcohol used; primary or secondary benzyl alcohols > allylic alcohols or aliphatic alcohols > cyclic alcohols. The rate of this reaction was found to be dependent upon the nature of the ligands used; e.g. phenanthroline 110 > bipyridyl 2,2' > TMEDA, etc. When L = phenanthroline 110 the catalytic effect, of the system ROH/CuCl/L (3:1:1), was found to be similar to the system ROH/CuCl/L (1:2:2). The pure oxygen was replaced by air without any noticeable change in the rate of the reaction. The primary aliphatic alcohols lead to the aldehydes containing 1, 2, etc. carbon atoms fewer than the starting alcohols.  相似文献   

4.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

5.
The first one-dimensional (1-D) indiumphosphate chain, In2(HPO4)2(H2PO4)2F2·C4N2H12 (1), has been hydrothermally prepared using piperazine (PIP) as a template. The structure consists of infinite chains of trans,trans-corners-sharing InO4F2 octahedra with the adjacent octahedra being bridged by tetrahedral PO3(OH) and PO2(OH)2 units, which are H-bonded with amine groups of the organic cations. Interestingly, this macroanionic chain InP2O8H3F is similar to that found in the mineral tancoite-like chains and has potential to further set up higher-dimensional networks. On heating 1 in the presence of additional phosphoric acid at 180 °C under hydrothermal condition, compound 2, In2(OH)(H2O)(PO4)2·H3O·H2O, possessed a 3-D structure building from the repetition of a secondary building unit is obtained. When 1 is heated with additional PIP, an unknown phase, compound 3 is formed. Finally, on treatment with another amine, such as diethylenetriamine or 1,4-diaminobutane, at 180 °C, 1, as a precursor, can convert into a previously known 3-D framework structure with 16-membered ring compound 4. Compounds 1 and 2 are determined by single-crystal X-ray diffraction. Furthermore, 1 is characterized by X-ray powder diffraction, IR spectroscopy, inductively coupled plasma analysis, thermogravimetric analysis and differential thermal analysis.  相似文献   

6.
Jinsoo Kim 《Tetrahedron letters》2006,47(23):3901-3903
High enantioselectivities are obtained using a tartaric acid-derived boronic ester (TarB-NO2) in combination with NaBH4 for the asymmetric reduction of aliphatic ketones. The resulting alcohols are obtained in enantiomeric excesses ranging from 56% to 94%.  相似文献   

7.
Structures of C4     
Linear (1), cyclic (2) and bicyclic (3) alternatives are considered as possible ground-state structures for C4. At the highest levels of theory, MP4SDQ/6-311//HF/6-311, 3, with two π electrons is found to be most stable.  相似文献   

8.
Reactions of Me5Al3[OC(C6H5)2C(C6H5)2O]2 (1) with alcohols ROH (R = Me, Et, tBu) in a 1:1 molar ratio afforded the compound Me2Al2[OC(C6H5)2C(C6H5)2O]2(C4H8O) (2) and a mixture of methylaluminum alkoxides. The alcohols acted as the factor formally eliminating a molecule of Me3Al (as a methylaluminum alkoxide) from compound 1. tBu3Al reacted with an equimolar amount of benzopinacol to form the monomeric complex tBuAl[OC(C6H5)2C(C6H5)2O](C4H8O) (3). Reactions of Me3Ga and Me3In with benzopinacol yielded trinuclear complexes Me5M3[OC(C6H5)2C(C6H5)2O]2 (4 (M = Ga), 5 (M = In)), isostructural to compound 1. In the presence of water and alcohols, compounds 4 and 5 underwent a decomposition reaction to benzopinacol and a mixture of metalloxanes and alkoxides. An unusual methylmethoxo indium benzopinacolate Me6In4[OC(C6H5)2C(C6H5)2O]2(OCH3)2 (6) was obtained in the reaction of benzopinacol with Me3In and Me2InOMe in a 1:1:1 molar ratio. Molecular structures of the compounds 3, 4 and 6 were determined by X-ray crystallography.  相似文献   

9.
Three new uranyl tungstates, A8[(UO2)4(WO4)4(WO5)2] (A=Rb (1), Cs (2)), and Rb6[(UO2)2O(WO4)4] (3), were prepared by high-temperature solid-state reactions and their structures were solved by direct methods on twinned crystals, refined to R1=0.050, 0.042, and 0.052 for 1, 2, and 3, respectively. Compounds 1 and 2 are isostructural, monoclinic P21/n, (1): a=11.100(7), b=13.161(9), , β=90.033(13)°, , Z=8 and (2): , , , β=89.988(2)°, , Z=8. There are four symmetrically independent U6+ sites that form linear uranyl [O=U=O]2+ cations with rather distorted coordination in their equatorial planes. There are six W positions: W(1) and W(2) have square-pyramidal coordination (WO5), whereas W(3), W(4), W(5), and W(6) are tetrahedrally coordinated. The structures are based upon a novel type of one-dimensional (1D) [(UO2)4(WO4)4(WO5)2]4− chains, consisting of WU4O25 pentamers linked by WO4 tetrahedra and WO5 square pyramids. The chains run parallel to the a-axis and are arranged in modulated pseudo-2D-layers parallel to (0 1 0). The A+ cations are in the interlayer space between adjacent pseudo-layers and provide a 3D integrity of the structures. Compounds 1 and 2 are the first uranyl tungstates with 2/3 of W atoms in tetrahedral coordination. Such a high concentration of low-coordinated W6+ cations is probably responsible for the 1D character of the uranyl tungstate units. The compound 3 is triclinic, Pa=10.188(2), b=13.110(2), , α=97.853(3), β=96.573(3), γ=103.894(3)°, , Z=4. There are four U positions in the structure with a typical coordination of a pentagonal bipyramid that contain uranyl ions, UO22+, as apical axes. Among eight W sites, the W(1), W(2), W(3), W(4), W(5), and W(6) atoms are tetrahedrally coordinated, whereas the W(7) and W(8) cations have distorted fivefold coordination. The structure contains chains of composition [(UO2)2O(WO4)4]6− composed of UO7 pentagonal bipyramids and W polyhedra. The chains involve dimers of UO7 pentagonal bipyramids that share common O atoms. The dimers are linked into chains by sharing corners with WO4 tetrahedra. The chains are parallel to [−101] and are arranged in layers that are parallel to (1 1 1). The Rb+ cations provide linkage of the chains into a 3D structure. The compound 1 has many structural and chemical similarities to its molybdate analog, Rb6[(UO2)2O(MoO4)4]. However, the compounds are not isostructural. Due to the tendency of the W6+ cations to have higher-than-fourfold coordination, part of the W sites adopt distorted fivefold coordination, whereas all Mo atoms in the Mo compound are tetrahedrally coordinated. Distribution of the WO5 configurations along the chain extension does not conform to its ‘typical’ periodicity. As a result, both the chain identity period and the unit-cell volume are doubled in comparison to the Mo analog, which leads to a new structure type.  相似文献   

10.
Five organic-inorganic hybrid gallium oxalate-phosphates, [Ga2(PO4)2(H2O)(C2O4)0.5](C3N2H12)0.5(H2O) (1), [Ga2(PO4)2(C2O4)0.5](C2N2H10)0.5(H2O) (2), [Ga2(PO4)2(C2O4)0.5](C3N2H12)0.5 (3), [Ga2(PO4)2(H2PO4)0.5(C2O4)0.5](C4N3H16)0.5 (H2O)1.5 (4) and [Ga2.5(PO4)2.5(H2O)1.5(C2O4)0.5](C4N3H15)0.5 (5), have been synthesized by using 1,3-diaminopropane, ethylenediamine and diethylene triamine as structure-directing agents under hydrothermal condition. The structures of 1-5 are based on Ga4(PO4)4(C2O4) building unit made up from Ga2O8(C2O4) oxalate-bridging dimer and alternating PO4 and GaO4 tetrahedral units. Compound 1 is layered structure where the building units link together in the same orientation. Corner sharing of these similar layers result in three-dimensional (3-D) structure 2. However, in compound 3, the building units arrange in a wave-like way to generate two types of eight member ring (8MR) channels. Both 4 and 5 contain the layers where the building units have an opposite orientation. Those layers are linked by H2PO4 group and Ga(PO4)(H2O)3 cluster, respectively, to form 3-D frameworks with 12MR large pore channels. Compounds 2-5 exhibit intersecting 3-D channels where the protoned amines are located.  相似文献   

11.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

12.
Three new hybrid crystals of 2-aminophenol-HClO4 (2-AP-HClO4, 1), 3-aminophenol-HClO4 (3-AP-HClO4, 2) and 4-aminophenol-HClO4 (4-AP-HClO4, 3) were obtained and their crystal structures determined. The 1 crystallises in centrosymmetric space group C2/c of monoclinic system while the other two (2 and 3) crystallise in the non-centro symmetric space group P21 and P212121, respectively. The oppositely charged units of the crystals, i.e. positively charged 2-APH+, 3-APH+ and 4-APH+ and ClO4, interact via weak N+–HO and O–HO hydrogen bonds forming 3D-supramolecular network. Relative to KDP the SHG efficiencies are 0.62 for 2 and 0.33 for 3, measured at 1064 nm using the Kurtz–Perry method.  相似文献   

13.
The interaction of rhenium hydrides ReHX(CO)(NO)(PR3)2 1 (X=H, R=Me (a), Et (b), iPr (c); X=Cl, R=Me (d)) with a series of proton donors (indole, phenols, fluorinated alcohols, trifluoroacetic acid) was studied by variable temperature IR spectroscopy. The conditions governing the hydrogen bonding ReHHX in solution and in the solid state (IR, X-ray) were elucidated. Spectroscopic and thermodynamic characteristics (−ΔH=2.3–6.1 kcal mol−1) of these hydrogen bonded complexes were obtained. IR spectral evidence that hydrogen bonding with hydride atom precedes proton transfer and the dihydrogen complex formation was found. Hydrogen bonded complex of ReH2(CO)(NO)(PMe3)2 with indole (2a–indole) and organyloxy-complex ReH(OC6H4NO2)(CO)(NO)(PMe3)2 (5a) were characterized by single-crystal X-ray diffraction. A short NHHRe (1.79(5) Å) distance was found in the 2a–indole complex, where the indole molecule lies in the plane of the Re(NO)(CO) fragment (with dihedral angle between the planes 0.01°).  相似文献   

14.
The cathodic reduction of [(η3-C3H5)Pd(Ph2P-C2H4-PPh2)]+, A, in acetonitrile solution affords Pd(Ph2P-C2H4-PPh2)2, B, and Pd(η3-C3H5)2, C. Its cyclic voltammetric behaviour is studied as a function of scan rate and concentration of A. These results and relevant coulometric experiments indicate a primary reversible charge transfer reaction followed by a fast second order process producing P1 and P2. This picture is complicated by a subsequent reaction of B with A leading to a dimeric electroactive species which is reduced at a slightly more negative potential value than A. The rate constants of individual chemical reactions were evaluated by digital simulation and best fit with experimental results.  相似文献   

15.
The reactions of Ar2TeO (Ar = 4-MeO-C6H4) with 2-, 3- and 4-pyridine carboxylic acids (LH) afforded different organotelluroxane structural types depending on the stoichiometry of the reactants and the conditions of the reaction. Ar2Te(L)OH (1a-1c) are formed in a 1:1 reaction of Ar2TeO with LH in the presence of water. On the other hand a 1:2 reaction under anhydrous conditions leads to the formation of Ar2TeL2 (2a-2c). A 2:2 reaction under anhydrous conditions affords the ditelluroxanes Ar2Te(L)OTe(L)Ar2 (3a-3c) while tritelluroxanes Ar2Te(L)OTeAr2OTe(L)Ar2 (4a-4c) are formed in 3:2 reactions. Interestingly, 3a-3c are formed in the reaction of 2a-2c with Ar2TeO. The former can be hydrolyzed to 1a-1c while the latter upon reaction with Ar2TeO lead to the formation of the tritelluroxanes 4a-4c. Attempts to metalate 2a with PdCl2(MeCN)2 leads to a transfer of the carboxylate ligand to palladium affording Ar2TeCl2 and PdL2. X-ray crystal structures of representative examples of the family of 1, 2 and 3 reveal interesting supramolecular structures and the formation of a novel [TeO]2 structural unit. The latter results from intermolecular secondary Te?O interactions.  相似文献   

16.
KR∗3Si4, 2, (R∗ = SitBu3), formed by the reaction of R∗4Si4 with 2 KC8, is an orange red solid stable at r.t. but decomposes in solution into R∗4Si4 and a compound that reacts with excess Me3SiCl to form (Me3Si)4R∗3ClSi8. Compound 2 is very sensitive to air and moisture. Its alcoholysis does not stabilize the protonated species HR∗3Si4 and ends up in R∗3Si3H3. Compound 2 reacts with 1/2 equivalent ICl to form a violet solid R∗6Si8. A 1:1 reaction of 2 with SiBr4 runs differently to form ditetrahedranyl, R∗3Si4-Si4R∗3 which is stable at r.t. but transforms into its violet isomer R∗6Si8 at higher temperatures. Compound 2 crystallizes as R∗3Si4K(18-crown-6) and its crystal structure shows a Si4-cage with a short Si-K linkage. It opens up at higher temperatures to acquire a unique structure in which a -CH2-CH2- group detaches itself from an ether to insert into Si-Si linkage of Si4-unit to form a bicyclic ring. The residual chain (CH2)10O6 closes itself on to a Si atom to form R∗3Si3(CH2-CH2)Si(C10H20O6)K(18-C-6).  相似文献   

17.
This work describes a catalytic system consisting of both Na4H3[SiW9Al3(H2O)3O37]·12H2O(SiW9Al3) and water as solvents (a small quantity of organic solvents were used as co-solvent for a few substrates) that can be good for selective oxidation of alcohols to ketones (aldehydes) using 30% H2O2 without any phase-transfer catalyst under mild reaction conditions. The catalyst system allows easy product/catalyst separation. Under the given conditions, the secondary hydroxyl group was highly chemoselectively oxidized to the corresponding ketones in good yields in the presence of primary hydroxyl group within the same molecule, and hydroxides are selectively oxidized even in the presence of alkene. Benzylic alcohols were selectively oxidized to the corresponding benzaldehydes in good yields without over oxidation products in solvent-free conditions. Nitrogen, oxygen, sulfur-based moieties, at least for the cases where these atoms are not susceptible to oxidation, do not interfere with the catalytic alcohol oxidation.  相似文献   

18.
Hydrocarbon solutions of PtPCy3(C2H4)2 (Cy = cyclohexyl) react rapidly with 8-quinolinecarboxaldehyde (1 equiv.) to yield tricyclohexylphosphine quinolinecarboxyl platinum hydride (1) and CH2CH2 (2 equiv.). Compound 1 reacts with CCl4 in hydrocarbons to give PtPCy3(NC9H6CO)Cl (2) and CHCl3. The compound PtPCy3(C2H4)2 also reacts with Ph2P(C6H4-o-CHO) and Ph2As(C6H4-o-CHO) to give PCy3PtPh2P(C6H4-o-CO)(H) (3) and PCy3PtPh2As(C6H4-o-CO)(H) (4), respectively. Compounds 1, 2, 3, and 4 were characterized by infrared and 1H NMR spectra, and the crystal structure of 3 was determined by X-ray diffraction. Crystals of 3 are monoclinic, with space group P21/n and Z = 4 with the unit cell dimensions a 9.7936(17), b 14.844(35), c 23.530(64) Å, β 91.817 (18)°, and V 3419.09(1.36) Å3. The structure is refined to final discrepancy factors of R = 0.055, and Rw = 0.064. The molecular structure of 3 is that ligating atoms are in a plane containing Pt. The position of the hydride was not located crystallographically, but the 1H NMR spectrum of 3, supports the presence of a terminal hydride that is cis to the carbonyl. The IR band of 3 at 2023 cm?1 which is assigned to ν(PtH), and the hydride cleavage reaction of 1 with CCl4, provide evidence for the PtH bond.  相似文献   

19.
The preparation and characterization of the substituted bis(cyclopentadienyl) zirconium dichloride complexes (η5-C5H4CMe2C9H7)2ZrCl2 (1a, b) is reported. The isomer mixture of 1a, b was treated with different reducing agents such as sodium and n-butyllithium under various reaction conditions. In these reactions CC and CH activation and cleavage reactions were observed. In combination with methylaluminoxane (MAO) 1a, b and 3 showed low activities as homogeneous ethylene polymerization catalysts and no activities towards propylene. Compounds 2 and 3 were characterized by NMR spectroscopy and X-ray crystallography.  相似文献   

20.
The reactions of OsO4 with excess of HSC6F5 and P(C6H4X-4)3 in ethanol afford the five-coordinate compounds [Os(SC6F5)4(P(C6H4X-4)3)] where X = OCH3 1a and 1b, CH3 2a and 2b, F 3a and 3b, Cl 4a and 4b or CF3 5a and 5b. Single crystal X-ray diffraction studies of 1 to 5 exhibit a common pattern with an osmium center in a trigonal-bipyramidal coordination arrangement. The axial positions are occupied by mutually trans thiolate and phosphane ligands, while the remaining three equatorial positions are occupied by three thiolate ligands. The three pentafluorophenyl rings of the equatorial ligands are directed upwards, away from the axial phosphane ligand in the arrangement “3-up” (isomers a). On the other hand, 31P{1H} and 19F NMR studies at room temperature reveal the presence of two isomers in solution: The “3-up” isomer (a) with the three C6F5-rings of the equatorial ligands directed towards the axial thiolate ligand, and the “2-up, 1-down” isomer (b) with two C6F5-rings of the equatorial ligands directed towards the axial thiolate and the C6F5-ring of the third equatorial ligand directed towards the axial phosphane. Bidimensional 19F–19F NMR studies encompass the two sub-spectra for the isomers a (“3-up”) and b (“2-up, 1-down”). Variable temperature 19F NMR experiments showed that these isomers are fluxional. Thus, the 19F NMR sub-spectra for the “2-up, 1-down” isomers (b) at room temperature indicate that the two S-C6F5 ligands in the 2-up equatorial positions have restricted rotation about their C–S bonds, but this rotation becomes free as the temperature increases. Room temperature 19F NMR spectra of 3 and 5 also indicate restricted rotation around the Os–P bonds in the “2-up, 1-down” isomers (b). In addition, as the temperature increases, the 19F NMR spectra tend to be consistent with an increased rate of the isomeric exchange. Variable temperature 31P{1H} NMR studies also confirm that, as the temperature is increased, the a and b isomeric exchange becomes fast on the NMR time scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号