Let t=min{a1,a2,…,am−1} and b=a1+a2++am−1t. In this paper it is shown that whenever t=2,
R(a1,a2,…,am−1)=2b2+9b+8.
It is also shown that for all values of t,
R(a1,a2,…,am−1)tb2+(2t2+1)b+t3.
  相似文献   

6.
Boundary effects on convergence rates for Tikhonov regularization     
Florencio I. Utreras 《Journal of Approximation Theory》1988,54(3)
We consider the Tikhonov regularizer fλ of a smooth function f ε H2m[0, 1], defined as the solution (see [1]) to We prove that if f(j)(0) = f(j)(1) = 0, J = m, …, k < 2m − 1, then ¦ffλ¦j2 Rλ(2k − 2j + 3)/2m, J = 0, …, m. A detailed analysis is given of the effect of the boundary on convergence rates.  相似文献   

7.
On reducibility of n-ary quasigroups     
Denis S. Krotov   《Discrete Mathematics》2008,308(22):5289-5297
An n-ary operation Q:ΣnΣ is called an n-ary quasigroup of order |Σ| if in the relation x0=Q(x1,…,xn) knowledge of any n elements of x0,…,xn uniquely specifies the remaining one. Q is permutably reducible if Q(x1,…,xn)=P(R(xσ(1),…,xσ(k)),xσ(k+1),…,xσ(n)) where P and R are (n-k+1)-ary and k-ary quasigroups, σ is a permutation, and 1<k<n. An m-ary quasigroup S is called a retract of Q if it can be obtained from Q or one of its inverses by fixing n-m>0 arguments. We prove that if the maximum arity of a permutably irreducible retract of an n-ary quasigroup Q belongs to {3,…,n-3}, then Q is permutably reducible.  相似文献   

8.
On the approximate behavior of the posterior distribution for an extreme multivariate observation     
Dale Umbach 《Journal of multivariate analysis》1978,8(4):518-531
The behavior of the posterior for a large observation is considered. Two basic situations are discussed; location vectors and natural parameters.Let X = (X1, X2, …, Xn) be an observation from a multivariate exponential distribution with that natural parameter Θ = (Θ1, Θ2, …, Θn). Let θx* be the posterior mode. Sufficient conditions are presented for the distribution of Θ − θx* given X = x to converge to a multivariate normal with mean vector 0 as |x| tends to infinity. These same conditions imply that E(Θ | X = x) − θx* converges to the zero vector as |x| tends to infinity.The posterior for an observation X = (X1, X2, …, Xn is considered for a location vector Θ = (Θ1, Θ2, …, Θn) as x gets large along a path, γ, in Rn. Sufficient conditions are given for the distribution of γ(t) − Θ given X = γ(t) to converge in law as t → ∞. Slightly stronger conditions ensure that γ(t) − E(Θ | X = γ(t)) converges to the mean of the limiting distribution.These basic results about the posterior mean are extended to cover other estimators. Loss functions which are convex functions of absolute error are considered. Let δ be a Bayes estimator for a loss function of this type. Generally, if the distribution of Θ − E(Θ | X = γ(t)) given X = γ(t) converges in law to a symmetric distribution as t → ∞, it is shown that δ(γ(t)) − E(Θ | X = γ(t)) → 0 as t → ∞.  相似文献   

9.
Multi-Dimensional Pattern Matching with Dimensional Wildcards: Data Structures and Optimal On-Line Search Algorithms     
Raffaele Giancarlo  Roberto Grossi 《Journal of Algorithms in Cognition, Informatics and Logic》1997,24(2):223-265
We introduce a new multidimensional pattern matching problem that is a natural generalization of string matching, a well studied problem[1]. The motivation for its algorithmic study is mainly theoretical. LetA[1:n1,…,1:nd] be a text matrix withN = n1ndentries andB[1:m1,…,1:mr] be a pattern matrix withM = m1mrentries, wheredr ≥ 1 (the matrix entries are taken from an ordered alphabet Σ). We study the problem of checking whether somer-dimensional submatrix ofAis equal toB(i.e., adecisionquery).Acan be preprocessed andBis given on-line. We define a new data structure for preprocessingAand propose CRCW-PRAM algorithms that build it inO(log N) time withN2/nmaxprocessors, wherenmax = max(n1,…,nd), such that the decision query forBtakesO(M) work andO(log M) time. By using known techniques, we would get the same preprocessing bounds but anO((dr)M) work bound for the decision query. The latter bound is undesirable since it can depend exponentially ond; our bound, in contrast, is independent ofdand optimal. We can also answer, in optimal work, two further types of queries: (a) anenumerationquery retrieving all ther-dimensional submatrices ofAthat are equal toBand (b) anoccurrencequery retrieving only the distinct positions inAthat correspond to all of these submatrices. As a byproduct, we also derive the first efficient sequential algorithms for the new problem.  相似文献   

10.
Precise orders of strong unicity constants for a class of rational functions     
Myron S. Henry  John J. Swetits 《Journal of Approximation Theory》1981,32(4):292-305
Let denote a certain class of rational functions. For each f ε , consider the polynomial of degree at most n that best approximates f in the uniform norm. The corresponding strong unicity constant is denoted by Mn(f). Then there exist positive constants α and β, not depending on n, such that an Mn(f) βn, N = 1,2,….  相似文献   

11.
L1-optimal estimates for a regression type function in R     
Yannis G. Yatracos 《Journal of multivariate analysis》1992,40(2)
Let X1, X2, …, Xn be random vectors that take values in a compact set in Rd, d ≥ 1. Let Y1, Y2, …, Yn be random variables (“the responses”) which conditionally on X1 = x1, …, Xn = xn are independent with densities f(y | xi, θ(xi)), i = 1, …, n. Assuming that θ lives in a sup-norm compact space Θq,d of real valued functions, an optimal L1-consistent estimator of θ is constructed via empirical measures. The rate of convergence of the estimator to the true parameter θ depends on Kolmogorov's entropy of Θq,d.  相似文献   

12.
Stochastic comparisons of order statistics from heterogeneous populations, with applications in reliability     
F. Proschan  J. Sethuraman 《Journal of multivariate analysis》1976,6(4):608-616
The basic result of the paper states: Let F1, …, Fn, F1,…, Fn have proportional hazard functions with λ1 ,…, λn , λ1 ,…, λn as the constants of proportionality. Let X(1) ≤ … ≤ X(n) (X(1) ≤ … ≤ X(n)) be the order statistics in a sample of size n from the heterogeneous populations {F1 ,…, Fn}({F1 ,…, Fn}). Then (λ1 ,…, λn) majorizes (λ1 ,…, λn) implies that (X(1) ,…, X(n)) is stochastically larger than (X(1) ,…, X(n)). Earlier results stochastically comparing individual order statistics are shown to be special cases. Applications of the main result are made in the study of the robustness of standard estimates of the failure rate of the exponential distribution, when observations actually come from a set of heterogeneous exponential distributions. Further applications are made to the comparisons of linear combinations of Weibull random variables and of binomial random variables.  相似文献   

13.
Asymptotic Formulas for the Zeros of the Meixner Polynomials     
X. -S. Jin  R. Wong 《Journal of Approximation Theory》1999,96(2):281
The zeros of the Meixner polynomialmn(x; β, c) are real, distinct, and lie in (0, ∞). Letαn, sdenote thesth zero ofmn(; β, c), counted from the right; and letαn, sdenote thesth zero ofmn(; β, c), counted from the left. For each fixeds, asymptotic formulas are obtained for bothαn, sandαn, s, asn→∞.  相似文献   

14.
Nonnegative solutions of a nonlinear recurrence     
John S. Lew  Donald A. Quarles  Jr. 《Journal of Approximation Theory》1983,38(4):357-379
Orthonormal polynomials with weight ¦τ¦ exp(−τ4) have leading coefficients with recurrence properties which motivate the more general equations ξmm − 1 + ξm + ξm + 1) = γm2, M = 1, 2,…, where ξo is a fixed nonnegative value and γ1, γ2,… are positive constants. For this broader problem, the existence of a nonnegative solution is proved and criteria are found for its uniqueness. Then, for the motivating problem, an asymptotic expansion of its unique nonnegative solution is obtained and a fast computational algorithm, with error estimates, is given.  相似文献   

15.
On the Erd s-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings     
A. Bialostocki  P. Dierker 《Discrete Mathematics》1992,110(1-3)
A link between Ramsey numbers for stars and matchings and the Erd s-Ginzburg-Ziv theorem is established. Known results are generalized. Among other results we prove the following two theorems. Theorem 5. Let m be an even integer. If c : e (K2m−1)→{0, 1,…, m−1} is a mapping of the edges of the complete graph on 2m−1 vertices into {0, 1,…, m−1}, then there exists a star K1,m in K2m−1 with edges e1, e2,…, em such that c(e1)+c(e2)++c(em)≡0 (mod m). Theorem 8. Let m be an integer. If c : e(Kr(r+1)m−1)→{0, 1,…, m−1} is a mapping of all the r-subsets of an (r+1)m−1 element set S into {0, 1,…, m−1}, then there are m pairwise disjoint r-subsets Z1, Z2,…, Zm of S such that c(Z1)+c(Z2)++c(Zm)≡0 (mod m).  相似文献   

16.
A central limit theorem for generalized multilinear forms     
Peter de Jong 《Journal of multivariate analysis》1990,34(2)
Let X1, …, Xn be independent random variables and define for each finite subset I {1, …, n} the σ-algebra = σ{Xi : i ε I}. In this paper -measurable random variables WI are considered, subject to the centering condition E(WI ) = 0 a.s. unless I J. A central limit theorem is proven for d-homogeneous sums W(n) = ΣI = dWI, with var W(n) = 1, where the summation extends over all (nd) subsets I {1, …, n} of size I = d, under the condition that the normed fourth moment of W(n) tends to 3. Under some extra conditions the condition is also necessary.  相似文献   

17.
Bounds on margin distributions in learning problems     
Vladimir Koltchinskii   《Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques》2003,39(6):1143-978
Let be a probability space and let Pn be the empirical measure based on i.i.d. sample (X1,…,Xn) from P. Let be a class of measurable real valued functions on For define Ff(t):=P{ft} and Fn,f(t):=Pn{ft}. Given γ(0,1], define n(δ):=1/(n1−γ/2δγ). We show that if the L2(Pn)-entropy of the class grows as −α for some α(0,2), then, for all and all δ(0,Δn), Δn=O(n1/2),
and
where and c(σ)↓1 as σ↓0 (the above inequalities hold for any fixed σ(0,1] with a high probability). Also, define
Then for all
uniformly in and with probability 1 (for the above ratio is bounded away from 0 and from ∞). The results are motivated by recent developments in machine learning, where they are used to bound the generalization error of learning algorithms. We also prove some more general results of similar nature, show the sharpness of the conditions and discuss the applications in learning theory.  相似文献   

18.
On improved estimators of the generalized variance     
Bimal Kumar Sinha 《Journal of multivariate analysis》1976,6(4):617-625
Treated in this paper is the problem of estimating with squared error loss the generalized variance | Σ | from a Wishart random matrix S: p × p Wp(n, Σ) and an independent normal random matrix X: p × k N(ξ, Σ Ik) with ξ(p × k) unknown. Denote the columns of X by X(1) ,…, X(k) and set ψ(0)(S, X) = {(np + 2)!/(n + 2)!} | S |, ψ(i)(X, X) = min[ψ(i−1)(S, X), {(np + i + 2)!/(n + i + 2)!} | S + X(1) X(1) + + X(i) X(i) |] and Ψ(i)(S, X) = min[ψ(0)(S, X), {(np + i + 2)!/(n + i + 2)!}| S + X(1) X(1) + + X(i) X(i) |], i = 1,…,k. Our result is that the minimax, best affine equivariant estimator ψ(0)(S, X) is dominated by each of Ψ(i)(S, X), i = 1,…,k and for every i, ψ(i)(S, X) is better than ψ(i−1)(S, X). In particular, ψ(k)(S, X) = min[{(np + 2)!/(n + 2)!} | S |, {(np + 2)!/(n + 2)!} | S + X(1)X(1)|,…,| {(np + k + 2)!/(n + k + 2)!} | S + X(1)X(1) + + X(k)X(k)|] dominates all other ψ's. It is obtained by considering a multivariate extension of Stein's result (Ann. Inst. Statist. Math. 16, 155–160 (1964)) on the estimation of the normal variance.  相似文献   

19.
New pseudopolynomial complexity bounds for the bounded and other integer Knapsack related problems     
Arie Tamir   《Operations Research Letters》2009,37(5):303-306
We consider the bounded integer knapsack problem (BKP) , subject to: , and xj{0,1,…,mj},j=1,…,n. We use proximity results between the integer and the continuous versions to obtain an O(n3W2) algorithm for BKP, where W=maxj=1,…,nwj. The respective complexity of the unbounded case with mj=, for j=1,…,n, is O(n2W2). We use these results to obtain an improved strongly polynomial algorithm for the multicover problem with cyclical 1’s and uniform right-hand side.  相似文献   

20.
The Lebesgue Constant for Higher Order Hermite-Fejér Interpolation on the Chebyshev Nodes     
Byrne G. J.  Mills T. M.  Smith S. J. 《Journal of Approximation Theory》1995,81(3)
For a fixed integer m ≥ 0, and for n = 1, 2, 3, ..., let λ2m, n(x) denote the Lebesgue function associated with (0, 1,..., 2m) Hermite-Fejér polynomial interpolation at the Chebyshev nodes {cos[(2k−1) π/(2n)]: k=1, 2, ..., n}. We examine the Lebesgue constant Λ2m, n max{λ2m, n(x): −1 ≤ x ≤ 1}, and show that Λ2m, n = λm, n(1), thereby generalising a result of H. Ehlich and K. Zeller for Lagrange interpolation on the Chebyshev nodes. As well, the infinite term in the asymptotic expansion of Λ2m, n) as n → ∞ is obtained, and this result is extended to give a complete asymptotic expansion for Λ2, n.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Let X1, X2,… be idd random vectors with a multivariate normal distribution N(μ, Σ). A sequence of subsets {Rn(a1, a2,…, an), nm} of the space of μ is said to be a (1 − α)-level sequence of confidence sets for μ if PRn(X1, X2,…, Xn) for every nm) ≥ 1 − α. In this note we use the ideas of Robbins Ann. Math. Statist. 41 (1970) to construct confidence sequences for the mean vector μ when Σ is either known or unknown. The constructed sequence Rn(X1, X2, …, Xn) depends on Mahalanobis' or Hotelling's according as Σ is known or unknown. Confidence sequences for the vector-valued parameter in the general linear model are also given.  相似文献   

2.
Let = {Ut: t > 0} be a strongly continuous one-parameter group of operators on a Banach space X and Q be any subset of a set (X) of all probability measures on X. By (Q; ) we denote the class of all limit measures of {Utn1 * μ2*…*μn)*δxn}, where {μn}Q, {xn}X and measures Utnμj (j=1, 2,…, n; N=1, 2,…) form an infinitesimal triangular array. We define classes Lm( ) as follows: L0( )= ( (X); ), Lm( )= (Lm−1( ); ) for m=1, 2,… and L( )=m=0Lm( ). These classes are analogous to those defined earlier by Urbanik on the real line. Probability distributions from Lm( ), m=0, 1, 2,…, ∞, are described in terms of their characteristic functionals and their generalized Poisson exponents and Gaussian covariance operators.  相似文献   

3.
We give a direct formulation of the invariant polynomials μGq(n)(, Δi,;, xi,i + 1,) characterizing U(n) tensor operators p, q, …, q, 0, …, 0 in terms of the symmetric functions Sλ known as Schur functions. To this end, we show after the change of variables Δi = γi − δi and xi, i + 1 = δi − δi + 1 thatμGq(n)(,Δi;, xi, i + 1,) becomes an integral linear combination of products of Schur functions Sα(, γi,) · Sβ(, δi,) in the variables {γ1,…, γn} and {δ1,…, δn}, respectively. That is, we give a direct proof that μGq(n)(,Δi,;, xi, i + 1,) is a bisymmetric polynomial with integer coefficients in the variables {γ1,…, γn} and {δ1,…, δn}. By making further use of basic properties of Schur functions such as the Littlewood-Richardson rule, we prove several remarkable new symmetries for the yet more general bisymmetric polynomials μmGq(n)1,…, γn; δ1,…, δm). These new symmetries enable us to give an explicit formula for both μmG1(n)(γ; δ) and 1G2(n)(γ; δ). In addition, we describe both algebraic and numerical integration methods for deriving general polynomial formulas for μmGq(n)(γ; δ).  相似文献   

4.
By using Krasnoselskii's fixed point theorem and upper and lower solutions method, we find some sets of positive values λ determining that there exist positive T-periodic solutions to the higher-dimensional functional difference equations of the form where A(n)=diag[a1(n),a2(n),…,am(n)], h(n)=diag[h1(n),h2(n),…,hm(n)], aj,hj :ZR+, τ :ZZ are T -periodic, j=1,2,…,m, T1, λ>0, x :ZRm, f :R+mR+m, where R+m={(x1,…,xm)TRm, xj0, j=1,2,…,m}, R+={xR, x>0}.  相似文献   

5.
For all integers m3 and all natural numbers a1,a2,…,am−1, let n=R(a1,a2,…,am−1) represent the least integer such that for every 2-coloring of the set {1,2,…,n} there exists a monochromatic solution to
a1x1+a2x2++am−1xm−1=xm.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号