首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have calculated analytically the superheating fieldH sh for bulk superconductors, correct to second order in. We find , which agrees well with numerical computations for<0.5. The surface order parameter is , and the penetration depth is .  相似文献   

2.
Optical NOON states ${{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} \mathord{\left/ {\vphantom {{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} {\sqrt 2 }}} \right. \kern-\nulldelimiterspace} {\sqrt 2 }}${{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} \mathord{\left/ {\vphantom {{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} {\sqrt 2 }}} \right. \kern-\nulldelimiterspace} {\sqrt 2 }} are an important resource for Heisenberg-limited metrology and quantum lithography. The only known methods for creating NOON states with arbitrary N via linear optics and projective measurements seem to have a limited range of application due to imperfect phase control. Here, we show that bootstrapping techniques can be used to create high-fidelity NOON states of arbitrary size.  相似文献   

3.
Surface structures in the Te/Ni(111) system are revealed by using reflection high-energy electron diffraction combined with X-ray and ultraviolet photoelectron spectroscopies. At a 0.33 mono-layer (ML)-Te/Ni(111) surface, a reversible structural phase transition is observed with a transition temperature Tc of 380 C. The diffraction pattern from the low temperature phase is accompanied by streaks. The high and low temperature phases are characterized by and rectangle, respectively. The mechanism of the phase transition is explained by the order-disorder transition with a rumpled chain model. Both 0.51 ML- and 0.44 ML-Te/Ni(111) surfaces exhibit the complex diffraction patterns accompanied by diffuse streaks. These surface structures are characterized by the rectangle and , respectively. All diffuse streaks obtained at the above surfaces are consistently interpreted in the view of the ill-ordered arrangements of the well-ordered linear chains. It is shown that the linear structure is the key in the Te/Ni(111) system.Received: 1 December 2003, Published online: 20 April 2004PACS: 61.14.Hg Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED) - 68.65.-k Low-dimensional, mesoscopic, and nanoscale systems: structure and nonelectronic properties - 64.60.Cn Order-disorder transformations; statistical mechanics of model systems  相似文献   

4.
For a compact connected orientablen-manifoldM, n 3, we study the structure ofclassical superspace ,quantum superspace ,classical conformal superspace , andquantum conformal superspace . The study of the structure of these spaces is motivated by questions involving reduction of the usual canonical Hamiltonian formulation of general relativity to a non-degenerate Hamiltonian formulation, and to questions involving the quantization of the gravitational field. We show that if the degree of symmetry ofM is zero, thenS,S 0,C, andC 0 areilh orbifolds. The case of most importance for general relativity is dimensionn=3. In this case, assuming that the extended Poincaré conjecture is true, we show that quantum superspaceS 0 and quantum conformal superspaceC 0 are in factilh-manifolds. If, moreover,M is a Haken manifold, then quantum superspace and quantum conformal superspace arecontractible ilh-manifolds. In this case, there are no Gribov ambiguities for the configuration spacesS 0 andC 0. Our results are applicable to questions involving the problem of thereduction of Einstein's vacuum equations and to problems involving quantization of the gravitational field. For the problem of reduction, one searches for a way to reduce the canonical Hamiltonian formulation together with its constraint equations to an unconstrained Hamiltonian system on a reduced phase space. For the problem of quantum gravity, the spaceC 0 will play a natural role in any quantization procedure based on the use of conformal methods and the reduced Hamiltonian formulation.  相似文献   

5.
Local Asymptotic Normality in Quantum Statistics   总被引:1,自引:1,他引:0  
The theory of local asymptotic normality for quantum statistical experiments is developed in the spirit of the classical result from mathematical statistics due to Le Cam. Roughly speaking, local asymptotic normality means that the family consisting of joint states of n identically prepared quantum systems approaches in a statistical sense a family of Gaussian state ϕ u of an algebra of canonical commutation relations. The convergence holds for all “local parameters” such that parametrizes a neighborhood of a fixed point . In order to prove the result we define weak and strong convergence of quantum statistical experiments which extend to the asymptotic framework the notion of quantum sufficiency introduces by Petz. Along the way we introduce the concept of canonical state of a statistical experiment, and investigate the relation between the two notions of convergence. For the reader’s convenience and completeness we review the relevant results of the classical as well as the quantum theory. Dedicated to Slava Belavkin on the occasion of his 60th anniversary  相似文献   

6.
The problem of quantum tunneling through the singular potential barrier \(V(x) = \left\{ {\begin{array}{*{20}c} {V_0 (b/x - x/a)^2 ,} & {0 < \left| x \right| \leqslant \sqrt {ab} } \\ {0,} & {\left| x \right| > \sqrt {ab} } \\ \end{array} } \right.\) is discussed on the subject of the possibility to replace the singular behavior of the problem at the point x = 0 by a limiting process at the top of the truncated potential. The validity of such a replacement and, on this basis, the zero transparency of the quantum potential barrier are shown.  相似文献   

7.
The quantum-statistical properties of states of an electromagnetic field of general superpositions of coherent states of the form of N α,β(α?+e iξ β? are investigated. Formulas for the fluctuations (variances) of Hermitian trigonometric phase field operators ? ≡ côs φ, ? ≡ sîn φ (the so-called “Susskind–Glogower operators”) are found. Expressions for the rigorous uncertainty relations (Cauchy inequalities) for operators of the number of photons and trigonometric phase operators, as well as for operators ? and ?, are found and analyzed. The states of amplitude \({N_{\alpha ,\beta }}\left( {\left| {{{\sqrt {ne} }^{i\varphi }}\rangle + {e^{i\xi }}\left| {{{\sqrt {{n_\beta }e} }^{i\varphi }}\rangle } \right.} \right.} \right)\), φ = φα = φβ, and phase \({N_{\alpha ,\beta }}\left( {\left| {{{\sqrt {ne} }^{i{\varphi _\alpha }}}\rangle + {e^{i\xi }}\left| {{{\sqrt {ne} }^{i{\varphi _\beta }}}\rangle } \right.} \right.} \right)\), n = n α = n β, superpositions of coherent states are considered separately. The types of quantum superpositions of meso- and macroscales (n α, n β » 1) are found for which the sines and/or cosines of the phase of the field can be measured accurately, since, under certain conditions, the quantum fluctuations of these quantities are close to zero. A simultaneous accurate measurement of cosφ and sinφ is possible for amplitude superpositions, while an accurate measurement of one of these trigonometric phase functions is possible in the case of certain phase superpositions. Amplitude superpositions of coherent states with a vacuum state are quantum states of the field with a “maximum” level of the quantum uncertainty both in the case of a mesoscopic scale and in the case of a macroscopic scale of the field with an average number of photons n α/β ≈ 0, n β/α » 1.  相似文献   

8.
The data on the charge-exchange reaction K +Xe → K 0 pXe′, obtained with the bubble chamber DIANA, are reanalyzed using increased statistics and updated selections. Our previous evidence for formation of a narrow pK 0 resonance with mass near 1538 MeV is confirmed. The statistical significance of the signal reaches some 8 (6) standard deviations when estimated as $ {S \mathord{\left/ {\vphantom {S {\sqrt B \left( {{S \mathord{\left/ {\vphantom {S {\sqrt {B + S} }}} \right. \kern-0em} {\sqrt {B + S} }}} \right)}}} \right. \kern-0em} {\sqrt B \left( {{S \mathord{\left/ {\vphantom {S {\sqrt {B + S} }}} \right. \kern-0em} {\sqrt {B + S} }}} \right)}} $ . The mass and intrinsic width of the Θ+ baryon are measured as m = 1538 ± 2 MeV and Γ = 0.39 ± 0.10 MeV.  相似文献   

9.
The statistics of the sputtering process, which has been used to explain sputterbroadening effect due to surface roughness, has been treated with conditional probabilities. This results in the relationship, , instead of derived by S. Hofmann [Appl. Phys.9, 59 (1976)], where δz,z, and are the depth resolution, sputtered depth and sputtering yield, respectively.  相似文献   

10.
We study the entanglement dynamics of an anisotropic two-qubit Heisenberg XYZ system in the presence of intrinsic decoherence. The usefulness of such a system for performance of the quantum teleportation protocol T0\mathcal{T}_0 and entanglement teleportation protocol T1\mathcal{T}_1 is also investigated. The results depend on the initial conditions and the parameters of the system. The roles of system parameters such as the inhomogeneity of the magnetic field b and the spin-orbit interaction parameter D, in entanglement dynamics and fidelity of teleportation, are studied for both product and maximally entangled initial states of the resource. We show that for the product and maximally entangled initial states, increasing D amplifies the effects of dephasing and hence decreases the asymptotic entanglement and fidelity of the teleportation. For a product initial state and specific interval of the magnetic field B, the asymptotic entanglement and hence the fidelity of teleportation can be improved by increasing B. The XY and XYZ Heisenberg systems provide a minimal resource entanglement, required for realizing efficient teleportation. Also, in the absence of the magnetic field, the degree of entanglement is preserved for the maximally entangled initial states $\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {00} \right\rangle \pm } \right|\left. {11} \right\rangle } \right)} \right.$\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {00} \right\rangle \pm } \right|\left. {11} \right\rangle } \right)} \right.. The same is true for the maximally entangled initial states $\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {01} \right\rangle \pm } \right|\left. {10} \right\rangle } \right)} \right.$\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {01} \right\rangle \pm } \right|\left. {10} \right\rangle } \right)} \right., in the absence of spin-orbit interaction D and the inhomogeneity parameter b. Therefore, it is possible to perform quantum teleportation protocol T0\mathcal{T}_0 and entanglement teleportation T1\mathcal{T}_1, with perfect quality, by choosing a proper set of parameters and employing one of these maximally entangled robust states as the initial state of the resource.  相似文献   

11.

Phase space analysis of quantum states is a newly developed topic in quantum optics. In this work we present Wigner phase space distributions for the two-mode binomial state produced by quantum entanglement between a vacuum state and a number state in a beamsplitter. By using two new binomial formulas involving two-variable Hermite polynomials and the so-called entangled Wigner operator, we find that the analytical Wigner function for the binomial state |ξqD(ξ) |q, 0〉 is related to a Laguerre polynomial, i.e.,

$ W\left (\sigma _{,}\gamma \right ) =\frac {(-1)^{q}e^{-\left \vert \gamma \right \vert ^{2}-\left \vert \sigma \right \vert ^{2}}}{\pi ^{2}}L_{q}\left (\left \vert \frac {-\varsigma (\sigma -\gamma )+\sigma ^{\ast }+\gamma ^{\ast }} {\sqrt {1+|\varsigma |^{2}}}\right \vert ^{2}\right ) $

and its marginal distributions are proportional to the module-square of a single-variable Hermite polynomial. Also, the numerical results show that the larger number sum q of two modes lead to the stronger interference effect and the nonclassicality of the states |ξq is stronger for odd q than for even q.

  相似文献   

12.
The new parameterQ 0 is introduced in our integration over transverse momentaq t in perturbative QCD to avoid infrared divergencies. Consideringq t >Q 0, the distribution of wee partons in impact parameter (b t ) and the mean radius of interaction are calculated in the framework of the leading logarithmic approximation (LLA) of perturbative QCD. It is shown that the slope of the elastic amplitude increases as \(B \propto {{\sqrt {\alpha _s In s} } \mathord{\left/ {\vphantom {{\sqrt {\alpha _s In s} } {Q_0^2 }}} \right. \kern-0em} {Q_0^2 }}\) .  相似文献   

13.
É. G. Batyev 《JETP Letters》2002,76(12):711-715
The exchange interaction and effective mass of fermionic excitation in a low-density (r S ? 1) system of two-dimensional electrons are estimated from simple considerations. For the ratio of effective (renormalized due to interaction) to band mass, the dependence ${{m^* } \mathord{\left/ {\vphantom {{m^* } m}} \right. \kern-0em} m} = ({A \mathord{\left/ {\vphantom {A {\sqrt {r_S } }}} \right. \kern-0em} {\sqrt {r_S } }})\exp (\alpha \sqrt {r_S } )$ is obtained, where A and α are constants on the order of unity. The effective g factor is independent of r S and is larger than its bare value in the two-valley case (silicon). Comparison with experimental data shows a qualitative agreement with silicon.  相似文献   

14.
In an earlier paper [1], we reported the observation of photoconductivity from free-carrier absorption in [Hg, Cd]Te. By using samples of [Hg, Cd]Te with different electrical and alloy properties, we have improved the near-millimeter-wave (NMMW) responsivity by over two orders of magnitude. At 1.6 K a best sample responsivity of about 185 V/W and a bandwidth of over 5 MHz have been measured. This responsivity corresponds to a Johnson-noise-limited noise-equivalent-power (NEP) of 1.6 × 10–12 . Another sample of similar compposition yielded an NEP of 1.8 × 10–12 and a 25 MHz bandwidth. These results coupled with a wide spectral sensitivity [1] indicate that [Hg, Cd]Te NMMW detectors compare very favorably with similar InSb detectors [2].  相似文献   

15.
Moments of the hadronic invariant mass and of the lepton energy spectra in semileptonic B decays have been determined with the data recorded by the DELPHI detector at LEP. From measurements of the inclusive b-hadron semileptonic decays, and imposing constraints from other measurements on b- and c-quark masses, the first three moments of the lepton energy distribution and of the hadronic mass distribution, have been used to determine parameters which enter into the extraction of |Vcb| from the measurement of the inclusive b-hadron semileptonic decay width. The values obtained in the kinetic scheme are: and include corrections at order 1/mb3. Using these results, and present measurements of the inclusive semileptonic decay partial width of b-hadrons at LEP, an accurate determination of |Vcb| is obtained: Received: 26 April 2005, Revised: 16 September 2005, Published online: 16 November 2005  相似文献   

16.
We show that a strongly correlated Fermi system with a fermion condensate which exhibits strong deviations from Landau–Fermi liquid behavior is driven into the Landau–Fermi liquid by applying a small magnetic field B at temperature T=0. This field-induced Landau–Fermi liquid behavior provides constancy of the Kadowaki–Woods ratio. A re-entrance into the strongly correlated regime is observed if the magnetic field B decreases to zero; the effective mass M* then diverges as \(M^* \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt B }}} \right. \kern-\nulldelimiterspace} {\sqrt B }}\). At finite temperatures, the strongly correlated regime is restored at some temperature \(T^* \propto \sqrt B \). This behavior is of a general form and takes place in both three-dimensional and two-dimensional strongly correlated systems. We demonstrate that the observed \({1 \mathord{\left/ {\vphantom {1 {\sqrt B }}} \right. \kern-\nulldelimiterspace} {\sqrt B }}\) divergence of the effective mass and other specific features of heavy-fermion metals are accounted for by our consideration.  相似文献   

17.
The cross section in terms of three independent radiative gluon correction form factors related to angular dependence and angular asymmetry is calculated as functions of the maximum recorded scaled gluon momentumX g, with 0X g 1. The effects of longitudinal and transversal polarization of the initial electron and positron are taken into account. For the same geometry the two independent thrust form factors are obtained as functions of the minimum thrustT m recorded, with 2/3T m <1. similarly=" the=" related=" invariant=" mass=" form=" factors=" are=" obtained.=" in=" particular,=" the=" regions=" of=" infrared="> , and of near infrared gluons, , are discussed.  相似文献   

18.
We study a spatially flat Friedmann model containing a pressureless perfect fluid (dust) and a scalar field with an unbounded from below potential of the form , where the parameters W 0 and V 0 are arbitrary and . The model is integrable and all exact solutions describe the recollapsing universe. The behavior of the model near both initial and final points of evolution is analyzed. The model is consistent with the observational parameters. We single out the exact solution with the present-day values of acceleration parameter q 0=0.5 and dark matter density parameter 0=0.3 describing the evolution within the time approximately equal to 2H 0 –1.  相似文献   

19.
In the framework of the littlest Higgs (LH) model, we consider the processes and , and we calculate the contributions of new particles to the cross sections of these processes in the future high energy e + e- collider (ILC) with TeV. We find that, with reasonable values of the free parameters, the deviations of the cross sections for the processes from their SM values might be comparable to the future ILC measurement precision. The contributions of the light Higgs boson H0 to the process are significantly large in all of the parameter space preferred by the electroweak precision data, which might be detected in the future ILC experiments. However, the contributions of the new gauge bosons BH and ZH to this process are very small.Received: 22 February 2005, Revised: 27 April 2005, Published online: 6 July 2005PACS: 12.60.Cn, 14.70.Pw, 14.80.Cp  相似文献   

20.
Quantum analogue of stabilised forced oscillations around an unstable equilibrium position is explored by solving the non-stationary Schrödinger equation (NSE) of the inverted harmonic oscillator (IHO) driven periodically by spatial uniform field of frequency \(\Omega \), amplitude \(F_{0}\) and phase \(\phi \), i.e. the system with the Hamiltonian of \(\hat{{H}}=(\hat{{p}}^{2}/2m)-(m\omega ^{2}x^{2}/2)-F_0 x\sin \) \(\left( {\Omega t+\phi } \right) \). The NSE has been solved both analytically and numerically by Maple 15 in dimensionless variables \(\xi = x\sqrt{m\omega /\hbar }\hbox {, }f_0 =F_0 /\omega \sqrt{\hbar m\omega }\) and \(\tau =\omega t\). The initial condition (IC) has been specified by the wave function (w.f.) of a generalised Gaussian type which suits well the corresponding quantum IC operator. The solution obtained demonstrates the non-monotonous behaviour of the coordinate spreading \(\sigma \left( \tau \right) \hbox { =}\sqrt{\big ( {\overline{\Delta \xi ^{2}\big ( \tau \big )} } \big )}\) which decreases first from quite macroscopic values of \(\sigma _{0} =2^{12,\ldots ,25}\) to minimal one of \(\sim \!(1/\sqrt{2})\) at times \(\tau <\tau _0 =0.125\ln \!\left( {16\sigma _0^4 +1} \right) \) and then grows back unlimitedly. For certain phases \(\phi \) depending on the \(\Omega /\omega \) ratio and \(n=\log _2\!\sigma _0 \), the mass centre of the packet \(\xi _{\mathrm {av}}( \tau )= \overline{\hat{{x}}(\tau )} \cdot \sqrt{m\omega /\hbar }\) delays approximately two natural ‘periods’ \(\sim \!(4\pi /\omega )\) in the area of the stationary point and then escapes to ‘\(+\)’ or ‘?’ infinity in a bifurcating way.  For ‘resonant’ \(\Omega =\omega \), the bifurcation phases \(\phi \) fit well with the regression formula of Fermi–Dirac type of argument n with their asymptotic \(\phi ( {\Omega ,n\rightarrow \infty } )\) obeying the classical formula \(\phi _{\mathrm {cl}} ( \Omega )=-\hbox {arctg} \, \Omega \) for initial energy \(E = 0\) in the wide range of \(\Omega =2^{-4},...,2^{7}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号