首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The incorporation of benzodithiazolyl (BDTA) and methylbenzodithiazolyl (MBDTA) radicals into porous hybrid frameworks via gas phase diffusion revealed that inclusion appeared selective for the MIL53(Al) framework against a range of other potential hosts. Both PXRD and EPR studies are consistent with retention of a π*-π* dimer motif for BDTA in MIL53(Al)@BDTA whereas MBDTA in MIL53(Al)@MBDTA appears to be monomeric. The guests are readily released by the addition of solvent (CH(2)Cl(2)).  相似文献   

4.
5.
Coordination framework materials display a rich array of host-guest properties and are notable amongst porous media for their extreme chemical versatility. This article highlights a number of areas where specific function has been incorporated into these framework host lattices.  相似文献   

6.
In situ synchrotron X-ray powder diffraction patterns of porous coordination polymers [[Cu(2)(pzdc)(2)(bpy)].G] have been measured (pzdc = pyrazine-2,3-dicarboxylate, bpy = 4,4'-bipyridine) (where G = H(2)O for CPL-2 superset H(2)()O, G = benzene for CPL-2 superset benzene, and G = void for the apohost). The structures of apohost and CPL-2 superset benzene were determined from Rietveld analysis. Adsorption of benzene in the channels induced a remarkable contraction in the crystal (b axis; 6.8%, volume; 4.9%), although the channels were occupied by the benzene molecules. This crystal transformation provides a new pore structure that is well suited for benzene molecules, and we denote it as a "shape-responsive fitting" transformation. This type of pore gives rise to a new guideline: frameworks can be composed of flexible motifs that are linked via strong bond and/or stiff motifs that are connected via weaker bonds.  相似文献   

7.
Porous crystalline materials such as zeolites, metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted great interest due to their well-defined pore structures in molecular dimensions. Knowing the atomic structures of porous materials is crucial for understanding their properties and exploring their applications. Many porous materials are synthesized as polycrystalline powders, which are too small for structure determination by X-ray diffraction. Three-dimensional electron diffraction (3DED) has been developed for studying such materials. In this Minireview, we summarize the recent developments of 3DED methods and demonstrate how 3DED revolutionized structural analysis of zeolites, MOFs, and COFs. Zeolites and MOFs whose structures remained unknown for decades could be solved. New approaches for design and targeted synthesis of novel zeolites could be developed. Moreover, we discuss the advances of structural analysis by 3DED in revealing the unique structural features and properties, such as heteroatom distributions, mixed-metal frameworks, structural flexibility, guest–host interactions, and structure transformation.

Three-dimensional electron diffraction is a powerful tool for accurate structure determination of zeolite, MOF, and COF crystals that are too small for X-ray diffraction. By revealing the structural details, the properties of the materials can be understood, and new materials and applications can be designed.  相似文献   

8.
We show how crystallisation of supramolecular isomers of a dynamic coordination system generates a series of isostructural porous materials. These mercury, cobalt and zinc metallocyclic materials show permanent porosity and exhibit single-crystal-to-single-crystal transformations.  相似文献   

9.
Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs.  相似文献   

10.
11.
The interactions of the nickel imine-amide allyl complex 1 with carbon monoxide and unsaturated hydrocarbons have been studied. It is shown that this complex reacts readily with carbon monoxide to form the nickel(0) diimine carbonyl complex [(2-(1-propenyl)-[1,10]phenanthroline)Ni(CO)2] 2. During the process the ligand undergoes a deep transformation within the nickel coordination sphere. Specifically, the nickel-nitrogen σ-bond turns to an N-donor bond with aromatization of a ring in the nitrogen-containing ligand. This novel heteroaromatic ligand 2-(1-propenyl)-[1,10]phenanthroline has been isolated; the nickel(0) diimine carbonyl complex 2 has been studied with X-ray diffraction method. The comparative spectral studies of complexes 1, 2, and 2-(1-propenyl)-[1,10]phenanthroline have been carried out with UV/vis, IR-FT, and 2D NMR spectroscopy. It has been shown that the planar 16-electron nickel(II) imine-amide allyl complex 1 is indifferent to olefins and acetylenes. Based on the NMR data, this fact can be explained by the inability of the π-δ rearrangement into 1.  相似文献   

12.
A new synthetic approach to prepare flexible porous coordination polymers (PCPs) by the use of soft secondary building units (SBUs) which can undergo multiple reversible metal-ligand bonds breaking is reported. We have prepared a zinc paddle-wheel-based two-fold interpenetrated PCP, {[Zn(2)(tp)(2)(L(2))]·2.5DMF·0.5water}(n) (2a, H(2)tp = terephthanlic acid; L(2) = 2,3-difluoro-1,4-bis(4-pyridyl)benzene), showing dynamic structural transformations upon the removal and rebinding of guest molecules. The X-ray structures at different degrees of desolvation indicate the highly flexible nature of the framework. The framework deformations involve slippage of the layers and movement of the two interpenetrated frameworks with respect to each other. Interestingly, the coordination geometry of a zinc paddle-wheel unit (one of the popular SBUs) is considerably changed by bond breaking between zinc and oxygen atoms during the drying process. Two zinc atoms in the dried form 2d reside in a distorted tetrahedral geometry. Compound 2d has no void volume and favors the uptake of O(2) over Ar and N(2) at 77 K. The O(2) and Ar adsorption isotherms of 2d show gate-opening-type adsorption behaviors corroborating the structure determination. The CO(2) adsorption isotherm at 195 K exhibits multiple steps originating from the flexibility of the framework. The structural transformations of the zinc clusters in the framework upon sorption of guest molecules are also characterized by Raman spectroscopy in which the characteristic bands corresponding to ν(sym)(COO(-)) vibration were used.  相似文献   

13.
Glucoamylase (EC 3.2.1.3) was immobilized to alkylamine porous glass with glutaraldehyde. The choice and pretreatment of carrier and conditions for immobilization have been investigated. The immobilized enzyme contained about 4.0–8.0% protein and its activity was about 1000–1700 U/g. Some characteristics of the immobilized enzyme and the native enzyme have been comparatively investigated. The optimum temperature and the pH stability of the preparation were almost identical to the native one. However, the optimum pH of bound glucoamylase shifted 1.3 pH units toward the alkaline side compared to the native one. The Michaelis constant(K m ) of bound glucoamylase for soluble starch was about four times higher than that of the native enzyme, whileK m values for maltose approached those of the native material. At 45‡C the half-life of IMG was 104 days under operational conditions. Alkaline protease, α-amylase, asparaginase, and penicillin acylase were also chemically coupled to porous glass by the same method and high relative activities were obtained.  相似文献   

14.
A porous metal-metalloporphyrin framework, MMPF-2, has been constructed from a custom-designed octatopic porphyrin ligand, tetrakis(3,5-dicarboxyphenyl)porphine, that links a distorted cobalt trigonal prism secondary building unit. MMPF-2 possesses permanent microporosity with the highest surface area of 2037 m(2) g(-1) among reported porphyrin-based MOFs, and demonstrates a high uptake capacity of 170 cm(3) g(-1) CO(2) at 273 K and 1 bar.  相似文献   

15.
Two novel temperature-controlled supramolecular stereoisomers of porous copper coordination networks have been synthesized and characterized.  相似文献   

16.
To create a functionalized porous compound, amide group is used in porous framework to produce attractive interactions with guest molecules. To avoid hydrogen-bond formation between these amide groups our strategy was to build a three-dimensional (3D) coordination network using a tridentate amide ligand as the three-connector part. From Cd(NO3)2.4H2O and a three-connector ligand with amide groups a 3D porous coordination polymer (PCP) based on octahedral Cd(II) centers, {[Cd(4-btapa)2(NO3)2].6H2O.2DMF}n (1a), was obtained (4-btapa = 1,3,5-benzene tricarboxylic acid tris[N-(4-pyridyl)amide]). The amide groups, which act as guest interaction sites, occur on the surfaces of channels with dimensions of 4.7 x 7.3 A2. X-ray powder diffraction measurements showed that the desolvated compound (1b) selectively includes guests with a concurrent flexible structural (amorphous-to-crystalline) transformation. The highly ordered amide groups in the channels play an important role in the interaction with the guest molecules, which was confirmed by thermogravimetric analysis, adsorption/desorption measurements, and X-ray crystallography. We also performed a Knoevenagel condensation reaction catalyzed by 1a to demonstrate its selective heterogeneous base catalytic properties, which depend on the sizes of the reactants. The solid catalyst 1a maintains its crystalline framework after the reaction and is easily recycled.  相似文献   

17.
In this communication we discuss a method of incorporating corrections to the coupled Hartree–Fock (CHF ) formalism by introducing the so-called “rearrangement effect.” In this we take account of the relaxation of the core orbitals when excitations from a starting Hartree–Fock wave function occur. The magnitude of this correction numerically is found to be quite significant for the polarizabilities of two-electron atomic systems, results for which are reported.  相似文献   

18.
One-dimensional alternative chains of two lanthanum complexes: [La(L1)3(CH3OH)(H2O)2]·5H2O (L1=anion of α-cyano-4-hydroxycinnamic acid ) 1 and [La(L2)3(H2O)2]·3H2O (L2=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C31H36LaN3O17, triclinic, P-1, , , , α=72.7960(10)°, β=83.3820(10)°, γ=67.1650(10)º, Z=2, R1=0.0377, wR2=0.0746; for 2: C33H37LaO14, triclinic, P-1, , , , α=81.145(2)°, β=87.591(2)°, γ=67.345(5)°, Z=2, R1=0.0869, wR2=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two η3-O bridges and four bridges (two η2-O and two η3-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.  相似文献   

19.
Hydrophobic ethyl, butyl or hexyl groups were introduced into the dicarboxylate ligand in the fluorescent porous coordination framework [Zn_2(fda)_2(bpy)](LMOF-202, H_2fda=9H-fluorene-2,7-dicarboxylic acid, bpy=4,4′-bipyridine) for improving water stability and tuning oxygen sensitivity. The long hexyl groups gave satisfactory water stability but its oxygen sensitivity is low(70.8% fluorescence quenched at 1 bar O_2(1 bar=105 Pa)). In contrast, the shorter side groups gave high oxygen sensitivity(93.9% fluorescence quenched at 1 bar O_2) and low water stability. The derivation of the Stern-Volmer curves of the O_2 luminescence quenching data from the linear form can be used for detecting trace impurities in the luminescent framework, being much more sensitive than conventional methods such as powder X-ray diffraction. Mixing the ethyl and hexyl groups in the solid-solution manner brought high oxygen sensitivity(96.4% fluorescence quenched at 1 bar O_2) and high water stability simultaneously in the same coordination framework.  相似文献   

20.
Functional materials: from hard to soft porous frameworks   总被引:1,自引:0,他引:1  
This Review aims to give an overview of recent research in the area of porous, organic-inorganic and purely organic, functional materials. Possibilities for introducing organic groups that exhibit chemical and/or physical functions into porous materials will be described, with a focus on the incorporation of such functional groups as a supporting part of the pore walls. The number of organic groups in the network can be increased such that porous, purely organic materials are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号