首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of main chain liquid crystalline ionomers containing sulphonate groups pendent to the polymer backbone were synthesized by an interfacial condensation reaction of 4,4′‐bis(1,10‐sebacyloxo)benzoic acid, brilliant yellow (BY), and 4,4′‐biphenyldiol. 4,4′‐Bis(1,10‐sebacyloxo)benzoic acid exhibited nematic schlieren texture during heating and cooling. The ionomers are thermotropic liquid crystalline polymers and thermally stable to about 270°C. They exhibit broad mesophase regions over a range of 220°C and the same nematic mesomogen with a colourful thread texture as B0‐LCP, which implies that the introduction of an ionic group did not change the texture of the B0‐LCP. However, the thermotropic liquid crystalline properties were somewhat weakened when the concentration of BY was more than 5%. The inherent viscosity in N,N‐dimethylformamide solution suggested that intermolecular associations of sulphonate groups occurred at low concentration, and intermolecular associations predominated at higher concentration.  相似文献   

2.
New thermotropic side chain liquid crystalline ionomers (LCIs), containing 4-(4-allyloxybenzyloxy)-4'-alkoxybiphenyl (IM) as mesogenic unit and allyltriethylammonium bromide (ATAB) as non-mesogenic unit, were synthesized by graft copolymerization upon polymethylhydrosiloxane. The chemical structures of the polymers were confirmed by IR spectroscopy. Differential scanning calorimetry (DSC) was used to measure the thermal properties of these polymers; the mesogenic properties were characterized by polarizing optical micrography, DSC and X-ray diffraction. The influence of the alkoxy chain length on the clearing temperatures of the ionomers is clearly shown in an odd-even effect, similar to other side chain liquid crystal polymers. The mesomorphic behaviour of the ionomers is compared with that of isomeric ionomers synthesized in previous work. The results demonstrate that the phase behaviour of the two series of isomeric ionomers is similar, but with the difference that the melting temperature of ionomers with biphenyl located at the end of the mesogen is higher than for ionomers with biphenyl located at the middle of the mesogen. The latter are more useful for smectic orientational order than the former.  相似文献   

3.
A series of novel liquid crystalline monomers and polymers incorporating phenylbenzoate or phenylcinnamate segments as mesogenic cores have been synthesized to investigate the sensitivity of the photochromic cinnamoyl derivatives and to overcome the defects of the thermal instability of azobenzene. Their liquid crystalline, thermal, and photoinduced properties of all monomers and polymers were characterized. The polymers showed excellent solubility in common organic solvents such as CHCl3, toluene, and DMF and exhibited good thermal stability with decomposition temperatures (Td) at 5% weight loss greater than 340 °C and about 50% weight loss occurred beyond 430 °C under nitrogen atmosphere. The pitch length (about 574 nm) of the synthesized cholesteric polymeric film ( CP2 ) was estimated using scanning electron microscopy. These photochromic polymers exhibited strong UV–vis absorption maxima at about 264 or 320 nm. Moreover, photo induced configurational E/Z isomerization further changed the π‐electron conjugation systems leading to a decrease at the π‐π* transition and an increase in the range of 300 nm to 400 nm for photochromic copolymers. The thermal stability of the Z‐structural segment was confirmed by heating the polymer at 50 °C for over 5 h. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1289–1304, 2008  相似文献   

4.
A series of liquid crystalline (LC) polysiloxanes containing diosgeninyl and menthyl groups (from monomers M1 and M2, respectively) were synthesized. The chemical structures of the monomers and polymers obtained were confirmed by elemental analysis, Fourier transform infrared spectroscopy, proton NMR and carbon-13 NMR. The LC properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction. Monomer M1 showed cholesteric oily-streak and spiral textures. Copolymers P2-P5 exhibited cholesteric phases. With increasing concentration of M2 units, the glass transition and clearing temperatures decreased. Experimental results demonstrated that a flexible polymer backbone and a long flexible spacer tended to favour a lower glass transition temperature, higher thermal stability, and wider mesophase temperature range.  相似文献   

5.
A series of liquid crystalline (LC) polysiloxanes containing diosgeninyl and menthyl groups (from monomers M 1 and M 2, respectively) were synthesized. The chemical structures of the monomers and polymers obtained were confirmed by elemental analysis, Fourier transform infrared spectroscopy, proton NMR and carbon‐13 NMR. The LC properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction. Monomer M 1 showed cholesteric oily‐streak and spiral textures. Copolymers P 2P 5 exhibited cholesteric phases. With increasing concentration of M 2 units, the glass transition and clearing temperatures decreased. Experimental results demonstrated that a flexible polymer backbone and a long flexible spacer tended to favour a lower glass transition temperature, higher thermal stability, and wider mesophase temperature range.  相似文献   

6.
Liquid crystalline ionomers containing sulfonate groups on the terminal unit of the chain were synthesized by an interfacial condensation reaction of 4,4′-dihydroxy-α,α′-dimethyl benzalazine, the monofunctional dye fast yellow (FY), and a 50/50 mixture of sebacoyl and dodecanedioyl dichlorides. The weight-average molecular weights were estimated from inherent viscosity measurements to be between 6000–11,000 and the sodium sulfonate concentrations ranged from 0–18.4 meq/100 g polymer. Elemental analyses, however, indicated much higher molecular weights, which suggested that there was a distribution of chains with one, two, or no FY endgroups. The polymers were semicrystalline and melted at ca. 140°C to form nematic mesophases that were stable over a temperature range of ca. 80°C. They were thermally stable to about 350°C. The ionomeric nature of the polymers was confirmed by the presence of intermolecular associations in nonpolar solvents, as demonstrated by dilute solution viscosity measurements.  相似文献   

7.
《Liquid crystals》2013,40(10):1297-1303
A new series of liquid crystalline main chain copolyesters were prepared, having ferrocene in the mesogenic segment and a methyl phosphate group along with a methylene spacer. The even numbered methylene groups were varied from two to ten. Liquid crystalline behaviour was investigated on a hot stage optical polarized microscope. Thermal properties of the polymers were analysed by TGA and DSC, revealing that the polymers yield high char products, probably caused by the formation of phosphorus and iron oxides. The glass transition (T g) temperatures of the polymers were found to be fairly low, the result of the incorporation of bulky phosphorus and ferrocene moieties in the chain. The phase behaviour was analysed and correlated with the structure of the polymers. The liquid crystalline textures of the polymers became more transparent with increasing spacer length. Energy minimized structures for the polymer repeating units reveal that both the ferrocene and phosphorus moieties produce more molecular entanglement, thus reducing the T g and T m of the polymers.  相似文献   

8.
S. Senthil  P. Kannan 《Liquid crystals》2002,29(10):1297-1303
A new series of liquid crystalline main chain copolyesters were prepared, having ferrocene in the mesogenic segment and a methyl phosphate group along with a methylene spacer. The even numbered methylene groups were varied from two to ten. Liquid crystalline behaviour was investigated on a hot stage optical polarized microscope. Thermal properties of the polymers were analysed by TGA and DSC, revealing that the polymers yield high char products, probably caused by the formation of phosphorus and iron oxides. The glass transition (Tg) temperatures of the polymers were found to be fairly low, the result of the incorporation of bulky phosphorus and ferrocene moieties in the chain. The phase behaviour was analysed and correlated with the structure of the polymers. The liquid crystalline textures of the polymers became more transparent with increasing spacer length. Energy minimized structures for the polymer repeating units reveal that both the ferrocene and phosphorus moieties produce more molecular entanglement, thus reducing the Tg and Tm of the polymers.  相似文献   

9.
A new interesting class of linear unsaturated polyesters based on dibenzylidenecycloalkanones have been synthesized by interfacial polycondensation of 4,4-azodibenzoyl chloride or 3,3-azodibenzoyl chloride with: 2,5-bis(p-hydroxybenzylidene)cyclopentanone I, 2,6-bis(p-hydroxybenzylidene)cyclohexanone II, 2,6-divanillylidenecyclohexanone III, or 2,7-bis(p-hydroxybenzylidene)cycloheptanone IV at ambient temperature. The copolyesters are also synthesized from the monomers I, II, III or IV with the diacid chlorides. The resulting polyesters and their copolyesters were characterized by elemental analyses, IR spectroscopy and solubility. Additionally, inherent viscosity of the polyesters in the range 0.32-0.86 dL g−1 and the inherent viscosity of the copolyesters in the range 0.28-0.65 dL g−1 were determined. The UV-visible spectra of certain polymers were measured in m-cresol solution and showed a characteristic absorption band at 435-473 nm due to n-π* transition. The thermal properties of the polymers were evaluated by thermo gravimetric analysis and differential scanning calorimetry measurements and correlated with their structural units. The crystallinity of some polyesters and copolyesters were tested. In addition, the electrical properties of all polyesters and copolyesters were measured.  相似文献   

10.
The synthesis and characterization of nine polysiloxanes containing 4-alkanyloxyphenyl trans-4-alkylcyclohexane side groups are described. Six monomers which contain a pentenyloxy of a hexenyloxy flexible spacer display a nematic mesophase, while the other three monomers which contain an undecenyloxy flexible spacer display nematic, smetic A and smectic E mesophases. All synthesized polymers present two smectic mesophases except one containing 4-hexanyloxyphenyl trans-4-n-butylcyclohexanoate side groups presents one smectic mesophase and one containing 4-undecanyloxyphenyl trans-4-n-pentylcyclohexanoate side groups presents three smectic mesophases. Trans-cis isomerization of mesogens and side chain crystallization did not occur for any of the synthesized polymers.  相似文献   

11.
A series of siloxane-based liquid crystalline elastomers containing biphenyl benzoate mesogenic units and ionic Brilliant Yellow moieties was synthesized. The chemical structures and liquid crystalline properties of the samples were characterized by FTIR, 1H NMR, DSC, POM and XRD. The effective crosslink density of the ionic elastomers was determined by swelling experiments in organic/buffer mixtures. All the polymers displayed a smectic mesophase. It was shown that the glass transition and melting point temperatures of the polymers increased slightly with increasing content of ionic and mesogenic groups in the polymers, while the liquid crystal mesophase region decrease slightly.  相似文献   

12.
The preparation of soluble and processable polybenzoxazine precursors capable of forming high performance networks is an important field of research with a broad spectrum of application. This study demonstrates an approach that utilizes aromatic sulfonediamine, bisphenol‐A, and formaldehyde in Mannich‐type polycondesation to prepare polybenzoxazine precursor. The structure of the oligomeric precursor (Mn = 2600) was confirmed by FTIR and 1H NMR spectral analysis. The precursor contained both sulfone and benzoxazine ring structures in the backbone. It was shown that small amount of ring‐opened phenolic groups were also present. Thermally activated self‐curing behavior of precursor in the absence of catalyst was studied by differential scanning calorimetry. Thermal properties of the cured polymers were also investigated by thermo gravimetric analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
A series of new side chain cholesteric liquid crystalline polysiloxanes was synthesized by grafting copolymerization of a mesogenic monomer (M1) and a chiral monomer (M2). The chemical structures of the monomers and polymers obtained were confirmed by FTIR, and 1H and 13C NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The influence of the content of the chiral unit on phase behaviour of the polymers is discussed. Monomer M1 showed nematic and smectic phases on cooling. The polymers P1 and P2 showed a nematic phase, P3-P5 showed cholesteric Grandjean texture, and P6 and P7 exhibited smectic short-rod texture. The polymers containing more than 7.2 mol % and less than 28.6 mol % of the chrial unit showed an induced cholesteric phase. Experimental results demonstrated that the glass transition, melting and clearing temperatures decreased with increasing content of the chiral unit.  相似文献   

14.
The synthesis of side-chain liquid crystalline polysiloxanes containing oligooxyethylene spacers and 4-methoxyphenyl benzyl ether and 6-cyano-2-naphthyl benzyl ether based mesogenic groups is presented. The phase behavior of both monomeric and polymeric liquid crystals was characterized by differential scanning calorimetry and optical polarized microscopy. All synthesized polysiloxanes present smectic mesomorphism. The insertion of oxygen atoms into the flexible aliphatic spacers leads to decrease in both glass transition and isotropization temperatures of the resulting side-chain liquid crystalline polymers.  相似文献   

15.
Side chain liquid crystalline polysiloxanes were synthesized by the hydrosilation of poly(methylhydrosiloxane) with p-(1-undecenyl-11-oxy) benzyl ethers of 4-cyanophenol (IM), 4-methoxyphenol (IIM), 4-cyano-4′-hydroxybiphenyl (IIIM), 4-methoxy-4′-hydroxybiphenyl (IVM), and 2-cyano-6-hydroxynaphthalene (VM). The phase behavior of both monomeric and polymeric liquid crystals was characterized by differential scanning calorimetry and optical polarization microscopy. IM is a monotropic liquid crystal, IIM is crystalline, and IIIM and IVM are enantiotropic liquid crystals, whereas VM presents two virtual liquid crystalline transitions and crystalline polymorphism. All the synthesized polysiloxanes present enantiotropic smectic mesomorphism.  相似文献   

16.
17.
18.
A new series of ferroelectric liquid crystals and side chain liquid crystalline polymers based on halogen-containing chiral centres has been synthesized. Chemical structures were analysed by NMR. Liquid crystal phases were characterized by differential scanning calorimetry, optical polarizing microscopy, and X-ray diffractometry. The behaviour of the liquid crystalline phases was investigated as a function of spacer units and differing terminal asymmetric moieties. It was found that phase transition temperatures decreased with increasing length of the oligooxyethylene spacer unit. Differing terminal asymmetric moieties led to differing mesophase phenomena. Furthermore, a wide temperature range (including room temperature) of a chiral smectic C phase was achieved.  相似文献   

19.
《Liquid crystals》2001,28(3):365-374
A new series of ferroelectric liquid crystals and side chain liquid crystalline polymers based on halogen-containing chiral centres has been synthesized. Chemical structures were analysed by NMR. Liquid crystal phases were characterized by differential scanning calorimetry, optical polarizing microscopy, and X-ray diffractometry. The behaviour of the liquid crystalline phases was investigated as a function of spacer units and differing terminal asymmetric moieties. It was found that phase transition temperatures decreased with increasing length of the oligooxyethylene spacer unit. Differing terminal asymmetric moieties led to differing mesophase phenomena. Furthermore, a wide temperature range (including room temperature) of a chiral smectic C phase was achieved.  相似文献   

20.
Minli Xie 《Liquid crystals》2013,40(11):1275-1283
A series of polyethyleneimine‐based side‐chain liquid‐crystalline polymers substituted with different ratios of cyanobiphenyl as pendent mesogenic groups has been synthesized in which the spacer length varies between two and six methylene units. The structures of the synthesized polymers are confirmed by infrared and 1H nuclear magnetic resonance spectroscopy. The thermal properties of these polymers have been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. The results indicate that the thermal behaviour of the polymers is strongly dependent on the degree of substitution. Polymers containing more than 69% of mesogenic groups exhibit nematic‐type thermotropic liquid‐crystalline behaviour with schlieren textures. Below this limit, the polymers are amorphous. Polymers with a higher degree of substitution present the crystalline states. The phase transition temperatures increase and the mesomorphic temperature ranges widen with increasing degree of substitution. The clearing temperatures decrease as the spacer length increases. An odd–even effect in the clearing temperatures is observed and the odd members display the higher values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号