首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n– and VxOyCln– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln– and VxOyCl(L)(n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1–2)– and VxOy (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.   相似文献   

2.
Hydrothermal reactions of V2O5, tetra-2-pyridylpyrazine (tpyprz) and an appropriate M(II) starting material yield a series of oxides of general composition [{Mx(tpyprz)}yV4O12] [x=1, y=2, M=Co(II), Ni(II); x=2, y=2, M=Cu(I); x=2, y=1, M=Zn(II)]. The Co(II) and Ni(II) analogues (1 and 2) are isostructural and consist of one-dimensional ribbons constructed from {V4O12}4− clusters linked through {M(tpyprz)}24+ binuclear units of edge sharing {MO3N3} octahedra. In contrast, the structure of [{Cu2(tpyprz)}2V4O12] (3) is two-dimensional and constructed of {Cu2(tpyprz)}n2n+ chains linked in the second dimension through the {V4O12}4− clusters. The structure of [{Zn2(tpyprz)V4O12] (4) is also two-dimensional but may be described as {Zn2V4O12} chains interconnected through the binucleating tpyprz ligands. The roles of the coordination preferences of the secondary metal cations as well as the nature of the organic components are discussed.  相似文献   

3.
V2O5/γ-Al2O3-TiO2 catalysts were prepared by the mixing sol-gel and co-impregnation method. The performance of the catalysts for complete oxidation of ethanol was performed in a conventional fixed-bed quartz reactor. And the effects of support, preparation methods and vanadium content have been investigated. The results showed that 5% V2O5 catalyst supported on γ-Al2O3-TiO2 possessed the best ethanol conversion under the considered temperature. This may be ascribed to the highly dispersible active component, mutual function between the active component and the carriers. The nature of the best performance for 5%V/γ-Al2O3-TiO2 catalyst may be related to the high V4+ amounts on the surface. And the surface V4+ species may play an important role in the formation of active site for the total ethanol oxidation.  相似文献   

4.
采用溶胶-凝胶-程序升温溶剂热一步法,利用表面活性剂EO20PO70EO20(P123)作为模板剂,分别制备了三元纳米复合材料Ag/ZnO-TiO2、Ag/Al2O3-TiO2和Ag/Fe2O3-TiO2。通过XRD、氮气吸附-脱附测定、TEM以及扫描电子显微镜配合X-射线能量色散谱仪(SEM-EDS)等对合成的3种催化剂进行了对比表征分析。结果表明,复合材料Ag/MxOy-TiO2中Ag以单质形式存在并较好地分布在MxOy-TiO2表面上。所合成产物颗粒尺寸较小(约10 nm左右),形貌较好。其中,Ag/ZnO-TiO2的比表面积与Ag/Al2O3-TiO2十分相近,略大于Ag/Fe2O3-TiO2。光催化活性研究中,以甲基橙为模型分子且辅以微波场作用。结果显示,上述三元复合材料的活性均明显高于未掺杂银的二元复合材料,其中Ag/ZnO-TiO2的光催化活性最好,在90 min内对甲基橙的降解率高达86%。  相似文献   

5.
Phase composition of the V2O5-NaVO3-Ca(VO3)2-Mn2V2O7 system was studied, and a subsolidus phase diagram constructed. The tetrahedration of the diagram is determined by the fact that the end-member of Ca1–x Mn x (VO3)2 solid solution is in equilibrium with all compounds of the system (V2O5, NaVO3, Ca(VO3)2), vanadium β-bronzes Na x V2O5 (0.22 ≤ x ≤ 0.40) and κ-bronzes (0.25 ≤ x ≤ 0.45, 0 ≤ y ≤ 0.16), Mn2V2O7, and Na2Mn3(V2O7)2 and with the end-members of reciprocal solid solutions based on calcium and sodium metavanadates. At 20°C, the degree of vanadium dissolution α for Na2Ca(VO3)4 is 100% for 0.5 ≤ pH ≤ 10; for the other phases of the system, vanadium dissolution ranges from 100 to 10% for pH below 3.5; in the alkaline pH range, ≤ 10%. Sodium for calcium substitution in Ca(VO3)2 increases α in aqueous NaOH to 20%. For Na2Mn3(V2O7)2, α decreases from 92 to 80% as pH changes from 0.5 to 2.5; at pH above 4, α = 30%.  相似文献   

6.
Modification of V2O5 with Ti, Sn, Zr, Nb, and Al oxides improves the activity and selectivity of the vanadium oxide catalyst in vapor-phase oxidation of β-picoline to give nicotinic acid. It is shown that the conversion of β-picoline and the yield of nicotinic acid on two-component V2O5-TiO2, V2O5-SnO2, V2O5-ZtrO2, V2O5-Nb2O5, and V2O5-Al2O3 catalysts may be several times those on the V2O5 catalyst. It was found that, on passing from V2O5 to double-component vanadium-containing catalysts, the proton affinity of active oxygen bonded to vanadium, calculated by the quantum-chemical method, grows simultaneously with the increase in the activity of the catalysts in the oxidation reaction.  相似文献   

7.
Summary Hydrated microcrystalline compound, V1-xCrxOy·nH2O, where x<0.063 and 4.4<n<8 and hydrated amorphous phases, CrVO4·H2O and Cr2V4O13·4H2O have been prepared using peroxo-polyacids of vanadium and chromium. The transformations of these hydrated phases upon heating were studied by TG-DTA and XRD techniques and led to three crystalline anhydrous compounds: (i) phase V1-xCrxOy, which is closely related to the orthorhombic V2O5, (ii) Cr2V4O13 and (iii) monoclinic CrVO4-M. The ranges of coexistence of phases in equilibrium were also determined.  相似文献   

8.
掺杂钒和硅对TiO2薄膜超亲水性的影响   总被引:2,自引:0,他引:2  
0引言 TiO2薄膜是众多氧化物半导体薄膜中研究最为广泛的一种材料.其表面的超亲水性和表面自清洁效应开辟了光催化薄膜功能材料的新的研究领域,已成为众多研究者研究的对象。但是如果薄膜仅由TiO2组成,当光照停止,水在TiO2薄膜表面的润湿角逐渐升高.并恢复原始状态。TiO2的禁带较宽,普通光线如太阳光等都不能将其激发.限制了其实际应用。因此如何使TiO2材料的光谱响应范围由紫外光反扩展到可见.光区一日如何更长时间地保持薄膜良好的亲水性是目前研究的重点。  相似文献   

9.
The Pt/V2O5 and Pd/V2O5 systems formed upon hydrogen reduction have catalytic activity in the oxidation of carbon monoxide exceeding the activity of Pt/Al2O3 and Pd/Al2O3. The transition from the low-activity to high-activity state on the Pt/V2O5 and Pd/V2O5 catalysts is characterized by temperature hysteresis and change in the kinetic equation. X-ray phase analysis (XPA), X-ray photoelectron spectroscopy (XPES), and X-ray spectral microanalysis were used to establish that prior reduction of V2O5 by hydrogen gives VO2, V6O13, a-H x V2O5, and b-H x V2O5, which facilitates the formation of an active catalyst surface.  相似文献   

10.
Summary It has been found that a series of MxOy-V2O5-B2O3glasses (MxOy=Li2O, Na2O, K2O and MgO) containing 10 mol%<span style='font-size:12.0pt;font-family: Symbol;mso-bidi-font-family:Symbol'>a-Fe2O3exhibited glass-forming regions that shifted with the content of network modifier (NWM) compared to B2O3and V2O5glasses. The M?ssbauer spectra of a series of MxOy-V2O5-B2O3glasses showed increased quadrupole splitting (D) with increasing NWM content. This suggests that the coordination numbers of the V4+and V5+are fixed and that the formation number of non-bridging oxygens (NBO) is considered to increase with increasing NWM content, and with increasing formation number of NBO, the Fe3+ion site changes from VO4to BO4tetrahedra. Consequently, the quadrupole splitting increases with increasing NWM content.  相似文献   

11.
Vanadium–silver bimetallic oxide cluster ions (VxAgyOz+; x=1–4, y=1–4, z=3–11) are produced by laser ablation and reacted with ethane in a fast‐flow reactor. A reflectron time of flight (Re‐TOF) mass spectrometer is used to detect the cluster distribution before and after the reactions. Hydrogen atom abstraction (HAA) reactions are identified over VAgO3+, V2Ag2O6+, V2Ag4O7+, V3AgO8+, V3Ag3O9+, and V4Ag2O11+ ions, in which the oxygen‐centered radicals terminally bonded on V atoms are active sites for the facile HAA reactions. DFT calculations are performed to study the structures, bonding, and reactivity. The reaction mechanisms of V2Ag2O6++C2H6 are also given. The doped Ag atoms with a valence state of +1 are highly dispersed at the periphery of the VxAgyOz+ cluster ions. The reactivity can be well‐tuned gradually by controlling the number of Ag atoms. The steric protection due to the peripherally bonded Ag atoms greatly enhances the selectivity of the V–Ag bimetallic oxide clusters with respect to the corresponding pure vanadium oxide systems.  相似文献   

12.
Reaction of VO(OiPr)3/citric acid premixes with excess water produces stable, blue dispersions of VxOy gel nanoparticles (5–100 nm in diameter) that can be isolated via acetone precipitation. Annealing under reducing conditions transforms these gel particles into crystalline, faceted VO2 nanoparticles of similar size. Larger VxOy gel particles (75–200 nm in diameter) form when VxOy nanogel dispersions are aged with aqueous ammonia. Upon annealing, these larger gel particles transform into crystalline VO2 rods of 50 nm–10 μm in length. Hysteresis loops confirming a semiconductor-to-metal phase transition near 68 °C expected for crystalline VO2 particles are recorded by variable-temperature electrical resistance and powder X-ray diffraction measurements.  相似文献   

13.
The photocatalytic degradation of tris (2–butoxyethyl) phosphate (TBEP) flame retardant using visible light response catalysts TiO2/V2O5, (N,F-doped)-TiO2/V2O5, and N-doped-SrTiO3 has been studied by high-resolution orbitrap mass spectrometry. TBEP degradation followed first-order kinetics with half-life values ranging between 9.8 and 83.5 min. N-doped-SrTiO3 was the catalyst with better photocatalytic performance while activity for TiO2/V2O5 composites followed the trend: N, F- TiO2/V2O5 > N-TiO2/V2O5> TiO2/V2O5. The identified degradation products (DPs) revealed hydroxylation, further oxidation and dealkylation as major degradation pathways. Based on the identified DPs and scavenging experiments, ?OH radical-mediated reactions can be considered for the degradation of TBEP using TiO2 and SrTiO3-based photocatalytic materials.  相似文献   

14.
A key challenge in the development of electrochemical energy storage (EES) is the design and engineering of electrode materials for electrochemical reactions. Transition metal oxalates (TMOxs) have been widely used in various EES applications due to their low cost, simple synthesis, and excellent electrochemical performance. In this review, the recent advances in the design and engineering of transition metal oxalate-based micro- and nanomaterials for EES are summarized. Specifically, the survey will focus on three types of micro- and nano-scale TMOxs (monometallic, bimetallic, and trimetallic TMOxs), their composites (TMOx-metal oxide, TMOx-hydroxide, TMOx-GO, and TMOx-MOFs composites), and derivatives, including transition metal oxides (TiO2, V2O5, MnxOy, Co3O4, NiO, CuO, and Nb2O5), multi-transition metal oxides (MCo2O4 (M = Ni, Cu, and Zn), NiMn2O4, and NxOy-MxOy), transition metal sulfide (NiS2), and carbon materials (ordinary carbon, GO and their composites), within the context of their intrinsic structure and corresponding electrochemical performance. A range of experimental variables will be carefully analyzed, such as sample synthesis, crystal structure, and electrochemical reaction mechanism. The applications of these materials as EES electrodes are then featured for supercapacitors (SCs) and lithium-ion batteries (LIBs). We conclude the review with a perspective of future research prospects and challenges.  相似文献   

15.
The reactions of Mo+ ions and Mo x O y + oxygen-containing molybdenum cluster ions (x = 1-3; y = 1-9) with methane, ethylene oxide, and cyclopropane were studied using ion cyclotron resonance. The formation of a number of organometallic ions, including the metallocarbene MoCH2 + , as well as molybdenum oxometallocarbenes Mo x O y CH2 + (x = 1-3; y = 2, 4, 5, or 8) and Mo x O y (CH4)+ ions (x = 1-3; y = 2, 5, or 8), was detected. The upper and lower limits of bond energies in oxometallocarbene complexes were evaluated: 111 > D 0 (Mo x O y +-CH2) > 82 kcal/mol (x = 1-3; y = 2, 5, 8).  相似文献   

16.
The oxidation of toluene on pure vanadium and molybdenum oxides was found to follow independent paths; it was benzene ring oxidation on V2O5 and side chain oxidation on MoO3. On mixed xV2O5 · yMoO3 oxides, the main reaction was the addition at the double bond preferably positioned meta rather than one-electron oxidation.  相似文献   

17.
The phase and chemical composition of precipitates formed in Mg(VO3)2-VOSO4-H2O system at initial pH from 1 to 7 and temperature from 80 to 90°C was studied. Polyvanadates of variable composition Mg x V y 4+V12-y 5+1O31–δ · nH2O (0.7 ≤ x ≤ 1.3, 1.2 ≤ y ≤ 2.4, 0.7 ≤ δ = 1.4) were formed at pH from 1 to 4 and V4+/V5+ ratio from 0.43 to 9. Compounds with the general formula Mg x V y 4+V6-y 5+O16-δ · nH2O (0.7 ≤ x ≤ 0.65, y = 1.0, 0.8 ≤ δ ≤ 0.85) were formed at pH from 6.0 to 7.0 and V4+/V5+ ratios from 0.11 to 0.25. The maximum V4+ concentration (y = 2.4) in the precipitates was achieved at the VV4+/V5+ solution ratio of 1.0 and pH = 3. The precipitates in solutions with pH 3 were formed only upon addition of VO2+ ions with the maximum rate at a V4+/V5+ ratio of 0.33. These processes were limited by second-order reactions on the surface of polyvanadates.  相似文献   

18.
Additional Magnetic Examinations of Ti3?xMxO5-Phases (M = Al3+, Fe2+, Mn2+, Mg2+) with a Contribution about CrTi2O5 Ti3?xMxO5 was prepared with M = Al3+, Fe2+, Mn2+, and Mg2+. Die magnetic properties of this phases were examinated by the Faraday method in respect to the temperature. The well known magnetic effect of Ti3O5 near 450 K is shifted to lower degrees if Ti is replaced by Al, Fe, Mn, or Mg. Compared to Ti3?xVxO5 and Ti3?xCrxO5 the stability of the low temperature-form of Ti3O5 is much more reduced in Ti3?xMxO5 (M = Al, Fe, Mn, Mg). The crystal structure investigation of CrTi2O5 explained the anomalous behaviour of the Cr3+ and V3+ doped Ti3O5.  相似文献   

19.
The phase and chemical compositions of precipitates formed in the system Zn(VO3)2–HCl–VOCl2–H2O at pH 1?3, molar ratio V4+: V5+ = 0.1?9, and 80°C were studied. It was shown that, within the range 0.4 ≤ V4+: V5+ ≤ 9, zinc vanadate with vanadium in a mixed oxidation state forms with the general formula ZnxV4+ yV5+ 2-yO5 ? nH2O (0.005 ≤ x ≤ 0.1, 0.05 ≤ y ≤ 0.3, n = 0.5?1.2). Vanadate ZnxV2O5 ? nH2O with the maximum tetravalent vanadium content (y = 0.30) was produced within the ratio range V4+: V5+ = 1.5?9.0. Investigation of the kinetics of the formation of ZnxV2O5 ? nH2O at pH 3 determined that tetravalent vanadium ions VO2+ activate the formation of zinc vanadate, and its precipitation is described by a second-order reaction. It was demonstrated that, under hydrothermal conditions at pH 3 and 180°C, zinc decavanadate in the presence of VOCl2 can be used as a precursor for producing V3O7 ? H2O nanorods 50–100 nm in diameter.  相似文献   

20.
Vanadium‐containing heteropoly acid solutions of Keggin H3+xPMo12–xVxO40 and modified HaPzMoyVxOb types (P‐Mo‐V HPAs) are promising nanosized inorganic metal‐oxygen cluster compounds with the property of reversible oxidability (VV ↔ VIV). The oxidation of reduced P‐Mo‐V HPAs at a temperature of 130–170 °C and an oxygen pressure of 4 atm is a convenient method for their regeneration, but results in regeneration degree of only 75–88 %. Various materials with electron transfer or oxidative properties, such as nitrogen doped carbon nanofibers (N‐CNFs), Sibunit‐4, HNO3, and MoO2, were investigated as additives to facilitate and accelerate the regeneration of HPA solutions. Among the studied additives HNO3 was found to show the best efficiency, resulting in regeneration degree of higher 95 %. Rapid and efficient regeneration of spent HPA catalysts is an important criterion for achieving high productivity and sustainability of oxidative processes on their basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号