首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
Using Brownian dynamics simulations, we perform a systematic investigation of the shear-induced migration of colloidal particles subject to Poiseuille flow in both cylindrical and planar geometry. We find that adding an attractive component to the interparticle interaction enhances the migration effect, consistent with recent simulation studies of platelet suspensions. Monodisperse, bidisperse and polydisperse systems are studied over a range of shear-rates, considering both steady-states and the transient dynamics arising from the onset of flow. For bidisperse and polydisperse systems, size segregation is observed.  相似文献   

2.
Within the canonical formalism, we consider a polydisperse lattice-gas model and a polydisperse continuous system interacting with the Kac potential. We obtain rigorous expressions for free energy densities. We also exhibit phase diagrams of the bidisperse lattice-gas model.  相似文献   

3.
We use the Surface Evolver to determine the shear modulus G of a dry 2D foam of 2500 bubbles, using both extensional and simple shear. We examine G for a range of monodisperse, bidisperse and polydisperse foams, and relate it to various measures of the structural disorder of each foam. In all cases, the shear modulus of a foam decreases with increasing disorder.  相似文献   

4.
Sascha Hilgenfeldt 《哲学杂志》2013,93(31-33):4018-4029
Abstract

In random packings or tilings, the size distribution of individual elements (domains) and the statistics of numbers of neighbours of those domains are strongly correlated. In the case of circular disks forming a random packing in the plane, it has long been known empirically that a certain critical amount of bidispersity avoids crystallization of the packing. We demonstrate how the formalism of a simplified granocentric model allows for an analytical computation of the size-topology correlation as a function of both size ratio and frequency of small disks. The results, obtained without free parameters, are in excellent agreement with the empirical findings of packing simulations concerning critical (terminal) bidispersity. It is also shown that, at equal size variance, the discrete (bidisperse) disk size distributions induce stronger disorder than continuously polydisperse disks.  相似文献   

5.
We develop and compare two formulations of the random-walk method, grain-based and voxel-based, to simulate the nuclear-magnetic-resonance (NMR) response of fluids contained in various models of porous media. The grain-based approach uses a spherical grain pack as input, where the solid surface is analytically defined without an approximation. In the voxel-based approach, the input is a computer-tomography or computer-generated image of reconstructed porous media. Implementation of the two approaches is largely the same, except for the representation of porous media. For comparison, both approaches are applied to various analytical and digitized models of porous media: isolated spherical pore, simple cubic packing of spheres, and random packings of monodisperse and polydisperse spheres. We find that spin magnetization decays much faster in the digitized models than in their analytical counterparts. The difference in decay rate relates to the overestimation of surface area due to the discretization of the sample; it cannot be eliminated even if the voxel size decreases. However, once considering the effect of surface-area increase in the simulation of surface relaxation, good quantitative agreement is found between the two approaches. Different grain or pore shapes entail different rates of increase of surface area, whereupon we emphasize that the value of the “surface-area-corrected” coefficient may not be universal. Using an example of X-ray-CT image of Fontainebleau rock sample, we show that voxel size has a significant effect on the calculated surface area and, therefore, on the numerically simulated magnetization response.  相似文献   

6.
A new variety of the “soliton management” in heterogeneous optical media is proposed. The system is composed as a periodic chain of nonlinear fibers with negligible intrinsic group-velocity dispersion (GVD), alternating with sections of unchirped fiber Bragg gratings (FBGs) operating in the reflection regime. Losses due to incomplete reflection are compensated by linear amplifiers. The model may apply to fiber-optic telecommunication links with periodically installed FBG modules, and it may be used for the design of laser setups. By means of extended simulations, we identify small regions in the underlying parameter space where this model, featuring the periodic separation of the Kerr nonlinearity and FBG-induced GVD (hence the name of the “split-step” system), supports stable transmission of RZ (return-to-zero) pulses, i.e., quasi-solitons. The effect of nonzero fiber’s GVD on the stable transmission regime is considered too. Moderately unstable (partly usable) transmission regimes are found in larger regions of the parameter space; they may be of two different types, with the average nonlinearity either undercompensating or overcompensating the GVD. Interactions between the stable RZ pulses are also studied, leading to the identification of a minimum separation between them necessary for the suppression of interaction effects.  相似文献   

7.
We performed numerical simulations of one-bead collision on the surface of a static granular medium. The simulations have been done for two- and three-dimensional packings of beads. The effect of the incident bead velocity, the shot angle, the mechanical parameters and the packing structure are analyzed for ordered and disordered 2D packings and only disordered 3D packings. The 2D results are in good agreement with experimental available data. The 3D simulations give good preliminaries results about the shock-wave propagation through the stacking and provides new insights in the ejection process (“splash function”).  相似文献   

8.
We investigate the macroscopic mechanical behaviour of wet polydisperse granular media. Capillary bonding between two grains of unequal diameters is described by a realistic force law implemented in a molecular-dynamics algorithm together with a protocol for the distribution of water in the bulk. Axial-compression tests are simulated for granular samples at different levels of water content, and compared to experiments performed in similar conditions. We find good agreement between numerical and experimental data in terms of the rupture strength as a function of water content. Our results show the importance of the distribution of water for the mechanical behaviour.  相似文献   

9.
Following the method proposed by Kozlov et al. [Victor V. Kozlov, Yuri Rostovtsev, Marlan O. Scully, Phys. Rev. A 74 (2006) 063829], we have investigated the atomic coherence induced by incoherent pump and vacuum spontaneous decay process in a Λ type three-level atomic system. The system can be in a coherent population trapping state and multi-steady states in different conditions. Interestingly, two kinds of new states are derived from the system with different pumping rate and decaying rate. They are the “robust” steady state and the “weak” steady state. Under the action of pump field and vacuum reservoir, these two kinds of states exhibit stable or unstable characteristics, respectively. Moreover, by investigating the difference between these states, we reveal the mechanism of coherence excitation and level-population transition. The special feature of the Λ atomic system will promise fruitful applications in quantum optics.  相似文献   

10.
In order to increase the damage threshold of metal mirrors we propose to create a special structure on the surface of the mirrors (“photonic surface”). This structure must have the period about λ/2 and will suppress propagation of surface plasmons with the frequency ω0=2πc/λ along the surface. This structure will also slightly increase the heat removal from the mirror’s surface by the excitation of the thermostimulated plasmon emission from the surface. The heat removal from the surface is estimated and possible implementation of this approach for use with CO2-lasers (λ=10.6 μm) and Nd-YAG-lasers (λ=1.06 μm) is analyzed.  相似文献   

11.
We study physical situations when one or two “guest” arbitrarily-chargedbreak particles are immersed in the bulk of a classical electrolyte modelled by a Coulomb gas of pm unit point-like charges, the whole system being in thermal equilibrium. The models are treated as two-dimensional with logarithmic pairwise interactions among charged constituents; the (dimensionless) inverse temperature beta is considered to be smaller than 2 in order to ensure the stability of the electrolyte against the collapse of positive-negative pairs of charges. Based on recent progress in the integrable (1+1)-dimensional sine-Gordon theory, exact formulas are derived for the chemical potential of one guest charge and for the asymptotic large-distance behavior of the effective interaction between two guest charges. The exact results imply, under certain circumstances, anomalous effects such as an effective attraction (repulsion) between like-charged (oppositely-charged) guest particles and the charge inversion in the electrolyte vicinity of a highly-charged guest particle. The adequacy of the concept of renormalized charge is confirmed in the whole stability region of inverse temperatures and the related saturation phenomenon is revised.  相似文献   

12.
We present predicted relative scattering losses from sidewall roughness in a strip waveguide compared to an identical waveguide surrounded by a photonic crystal with a complete or incomplete gap in both 2d and 3d. To do so, we develop a new semi-analytical extension of the classic “volume-current method” (Green’s functions with a Born approximation), correcting a longstanding limitation of such methods to low-index contrast systems (the classic method may be off by an order of magnitude in high-contrast systems). The resulting loss predictions show that even incomplete gap structures such as photonic-crystal slabs should, with proper design, be able to reduce losses by a factor of two compared to an identical strip waveguide; however, incautious design can lead to increased losses in the photonic-crystal system, a phenomena that we explain in terms of the band structure of the unperturbed crystal.  相似文献   

13.
In this paper, we propose that the “anomalous” optical response exhibited by GaP and InP infiltrated opals is due to the peculiar morphology shown by these materials when grown within the pores. In order to account for their optical response, we propose a new structural model consisting of a network of high dielectric spheres located in the pores of the bare opal, interconnected by cylinders of the same material. A fair agreement between the theoretical predictions using this model and the experimental measurements has been found. We also show that the inverse structure presents very interesting optical properties.  相似文献   

14.
This paper presents a study of a recent solution to Maxwell's equation, the so-called “Frozen Waves”, whose main characteristics are to remain static in space, and to keep an arbitrary longitudinal field pattern previously chosen. These waves could be obtained by an adequate, but discrete, superposition of monochromatic Bessel beams. Contrary to that, we have here proposed a new way to get these waves through a continuous superposition of Bessel beams, and discussed some physical aspects and then exemplified for both loss and lossless media.  相似文献   

15.
In this Letter we call into question the perturbatively parity breakdown at 1-loop for the massless QED3 frequently claimed in the literature. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. Such a problem has been investigated in the framework of BPHZL renormalization method, by adopting the Lowenstein–Zimmermann subtraction scheme. The 1-loop parity-odd contribution to the vacuum-polarization tensor is explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern–Simons term is generated at that order induced through the infrared subtractions — which violate parity. We show then that, what is called “parity anomaly”, is in fact a parity-odd counterterm needed for restauring parity.  相似文献   

16.
Using the Quark-Gluon Strings Model --combined with Regge phenomenology-- we perform a comparative analysis of Λ, Σ0, Λ(1520) and Θ+ production in binary reactions induced by photon, pion and proton beams on the nucleon. We find that the existing experimental data on the γpK+Λ differential and total cross-sections can be described very well by the model for photon energies 1-16 GeV and - t < 2 GeV2 assuming a dominant contribution of the K* Regge trajectory. Moreover, using the same parameters we also reproduce the total γpK+Σ0 and γpK+Λ(1520) cross-sections suggesting a “universality” of the Regge model. In order to check the consistency of the approach we evaluate the differential and total cross-sections for the reaction π-pK0Λ which is also found to be dominated by the K* Regge trajectory. Using the apparent “universality” of the Regge model we extend our scheme to the analysis of the binary reactions γp↦¯0Θ+, π-pK-Θ+ and pp↦Σ+Θ+ as well as the exclusive and inclusive Θ+ production in the reactions ppp¯0Θ+ and pp↦Θ+X. Our detailed studies demonstrate that Θ+ production does not follow the “universality” principle, thus suggesting an essentially different internal structure of the exotic baryon relative to conventional hyperons or hyperon resonances.  相似文献   

17.
We report the observation of the Debye–Scherrer diffraction using electron pulses emitted from a fs-laser plasma. Titanium sapphire laser pulses with 1.6 mJ/45 fs at 1 kHz are focused on a moving steel tape at close to normal incidence. The laser plasma generated ejects a large number of electrons in the direction of polarization, with a continuous energy spectrum extending up to 100 keV. Selecting an energy range of these electrons and scattering them on a thin aluminium sample generates a “streaked” diffraction pattern with unique features.  相似文献   

18.
The effect of polydispersity on an AB diblock copolymer melt is investigated using lattice-based Monte Carlo simulations. We consider melts of symmetric composition, where the B blocks are monodisperse and the A blocks are polydisperse with a Schultz-Zimm distribution. In agreement with experiment and self-consistent field theory (SCFT), we find that polydispersity causes a significant increase in domain size. It also induces a transition from flat to curved interfaces, with the polydisperse blocks residing on the inside of the interfacial curvature. Most importantly, the simulations show a relatively small shift in the order-disorder transition (ODT) in agreement with experiment, whereas SCFT incorrectly predicts a sizable shift towards higher temperatures.  相似文献   

19.
Using spatially modulated illumination (SMI) light microscopy it is possible to measure the sizes of fluorescent structures that have an extension far below the conventional optical resolution limit (“subresolution size”). Presently, the sizes are determined as the object extension along the optical axis of the SMI microscope. For this, however, “a priori” assumptions on the fluorochrome distribution (“shape”) within the examined fluorescent structure have to be made. Usually it is assumed that the fluorochrome follows a Gauss-distribution or a spherical distribution. In this report we overcome the necessity to make an assumption on the shape of the fluorochrome distribution. We introduce two new experimentally obtained parameters which allow the determination of a shape measure to describe the spatial distribution of the fluorescent dye. This becomes possible by independent measurements with different excitation wavelengths. As an example, we present shape parameter measurements on individual fluorescent microspheres with a nominal geometrical diameter (“size”) of 190 nm. In the case investigated, the experimental shape correlated well with a homogeneous fluorochrome distribution (“spherical shape”) but not with a variety of other “shapes”.  相似文献   

20.
We test the concepts of renormalized charge and potential saturation, introduced within the framework of highly asymmetric Coulomb mixtures, on exactly solvable Coulomb models. The object of study is the average electrostatic potential induced by a unique “guest” charge immersed in a classical electrolyte, the whole system being in thermal equilibrium at some inverse temperature β. The guest charge is considered to be either an infinite hard wall carrying a uniform surface charge or a charged colloidal particle. The systems are treated as two-dimensional; the electrolyte is modelled by a symmetric two-component plasma (TCP) of point-like ±e charges with logarithmic Coulomb interactions. Two cases are solved exactly: the Debye–Hückel limit β e2→ 0 and the Thirring free-fermion point β e2=2. The results at the free-fermion point can be summarized as follows: (i) The induced electrostatic potential exhibits the asymptotic behavior, at large distances from the guest charge, whose form is different from that obtained in the Debye–Hückel (linear Poisson–Boltzmann) theory. This means that the concept of renormalized charge, developed within the nonlinear Poisson–Boltzmann (PB) theory to describe the screening effect of the electrolyte cloud, fails at the free-fermion point. (ii) In the limit of an infinite bare charge, the induced electrostatic potential saturates at a finite value in every point of the electrolyte region. This fact confirms the previously proposed hypothesis of potential saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号