首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined solutions of a polystyrene–polybutadiene pentablock copolymer in 1,4‐dioxane, a slightly selective solvent for polystyrene and a θ solvent for polybutadiene, with static light scattering (SLS), dynamic light scattering (DLS), and small‐angle neutron scattering (SANS). The SANS data have been analyzed with the Percus–Yevick model to represent the scattering from interacting cores, approximated as hard spheres, and with a Lorentzian function to represent the scattering from unassociated and associated polymer chains. The SANS data at 25 °C clearly reveal interacting domains, approximately 6 nm in radius, formed by the association of the insoluble polybutadiene block in the 20% sample. The 4% sample does not show such domains, whereas the 7% sample represents an intermediate situation, with both unassociated polymer and associated polymer. At higher temperatures, the domains dissolve. The DLS data for samples with concentrations of 2–22% show two diffusive modes: a fast mode corresponding to the cooperative dynamics of concentration fluctuations and a slow mode corresponding to the diffusion of clusters. The large length‐scale heterogeneities, indicated by the strong angular dependence of SLS, implies that the small microdomains of about 10–15 polybutadiene blocks are bridged by the polystyrene chains, forming large aggregates with randomly distributed crosslinks on length scales much larger than the domain size. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2807–2816, 2002  相似文献   

2.
We present investigations of the structural properties of thermoresponsive poly(N-isopropylacrylamide) (PNiPAM) microgels dispersed in an aqueous solvent. In this particular work poly(ethyleneglycol) (PEG) units flanked with acrylate groups are employed as cross-linkers, providing an architecture designed to resist protein fouling. Dynamic light scattering (DLS), static light scattering (SLS), and small angle neutron scattering (SANS) are employed to study the microgels as a function of temperature over the range 10 °C ≤ T ≤ 40 °C. DLS and SLS measurements are simultaneously performed and, respectively, allow determination of the particle hydrodynamic radius, R(h), and radius of gyration, R(g), at each temperature. The thermal variation of these magnitudes reveals the microgel deswelling at the PNiPAM lower critical solution temperature (LCST). However, the hydrodynamic radius displays a second transition to larger radii at temperatures T ≤ 20 °C. This feature is atypical in standard PNiPAM microgels and suggests a structural reconfiguration within the polymer network at those temperatures. To better understand this behavior we perform neutron scattering measurements at different temperatures. In striking contrast to the scattering profile of soft sphere microgels, the SANS profiles for T ≤ LCST of our PNiPAM-PEG suspensions indicate that the particles exhibit structural properties characteristic of star polymer configurations. The star polymer radius of gyration and correlation length gradually decrease with increasing temperature despite maintenance of the star polymer configuration. At temperatures above the LCST, the scattered SANS intensity is typical of soft sphere systems.  相似文献   

3.
A group of rodlike polymers soluble only in strong protic acids was studied using light scattering and viscosity techniques. These include poly(1,4-phenylene benzobisoxazole), poly(1,4-phenylene benzobisthiazole) and poly(1,4-phenylene terephthalamide). The solution properties were dependent on the ionic strength of the acid used as solvent. In a low ionic strength acid such as chlorosulfonic acid, the polymer solutions exhibited decreased unpolarized scattering, an extremely small translational diffusion coefficient, and high viscosity. All of these effects could be eliminated by the addition of a salt such as lithium chlorosulfonate, which increased the ionic strength of the solvent. The effects were attributed to a pseudo ordering of the polymer solvent system caused by electrostatic repulsions between protonated polymer chains effective over large distances (ca. 100 Å) in the low ionic strength solvent. This type of ordering is distinct from actual anisotropic phase formation, which occurs at higher concentrations in these systems. Analysis of data at infinite dilution gave a persistence length of at least 45 nm for poly(1,4-phenylene terephthalamide), larger than previous experimental results, but in accord with recent rotational isomeric state calculations and similar to experimental data for poly(p-benzamide).  相似文献   

4.
We have investigated self-organization of polymers with surfactants through solvent shifting process resulting in formation of stable and uniform nanoparticles. We studied polymeric nanoparticles made of poly(methylmethacrylate) and of polystyrene dispersed in water. The dispersion was prepared by a fast mixing of a solution of the polymers with a solution of several ionic and nonionic surfactants in pure water. We observed the formation of well defined nanoparticles by light scattering, small-angle neutron scattering (SANS), and cryogenic transmission electron microscopy (Cryo-TEM) methods. The study shows how nanoparticle properties are changed by the chemical composition of surfactants, molar mass of polymers, concentrations of both components and finally, by variations in method of nanoparticles preparation. Dynamic light scattering (DLS) and static light scattering (SLS) provide the hydrodynamic radii and radii of gyration for selected types of nanoparticles. Cryo-TEM experiments prove that the nanoparticles have good spherical shape. Analysis of SANS data and Cryo-TEM micrographs suggest that the prepared particles are composed of polymer and surfactant that are evenly distributed.  相似文献   

5.
This paper gives two examples of experiments that demonstrate the power of small angle scattering techniques in the study of swollen polymer networks. First, it is shown how the partly ergodic character of these systems is directly detected by neutron spin echo experiments. The observed total field correlation function of the intensity scattered from a neutral gel allows the ergodic contribution to be directly distinguished from the non ergodic part, at values of transfer wave vector q that lie well beyond the range of dynamic light scattering. The results can be compared with those obtained at much lower q from visible light scattering. Second, a recent application of small angle X-ray (SAXS) and neutron (SANS) scattering is described for a polyelectrolyte molecule, DNA, in semi-dilute solutions under near-physiological conditions. For these observations, the divalent ion normally present, calcium, is replaced by an equivalent ion, strontium. The comparison between SANS and SAXS yields a quantitative picture of the cloud of divalent counter-ions around the central DNA core. At physiological conditions, the cloud is thinner than that predicted on the basis of the Debye screening length but thicker than if the counter-ions were condensed on the DNA chain.  相似文献   

6.
7.
The effect of temperature on the structure of aqueous dispersions of hydrophobically end-capped poly(ethylene oxide) (PEOM) was investigated by small angle neutron scattering (SANS). Polymers with hydrogenated or deuterated n-octadecyl end-groups were studied in heavy water or in a mixture heavy water / water, respectively. In the latter case the PEO chains were selectively matched. In all the cases, the scattering curves were characterised by a main peak which revealed organisation of polymers into micelles consisting of hydrophobic cores surrounded by repulsive PEO coronae. Measurements were performed in the semi-dilute regime where micelles coronae overlap. At constant polymer concentration, an increase in temperature leads to decreasing solvent strength of water for the PEO chains and decreasing repulsion between the PEO coronae. As a result, the intensity of the peak in a mixture of water /heavy water decreases with temperature On the contrary, in heavy water, the peak of the scattered intensity increases with increasing temperature. This scattering behaviour is interpreted on the basis of a scaling theory of the semi-dilute solutions of star-like polymer micelles.  相似文献   

8.
Swelling and scattering measurements are reported from chemically cross-linked polyvinyl alcohol) hydrogels and the corresponding semi-dilute polymer solutions. The mixing free energy in the swollen network is found to be significantly smaller than that of the corresponding polymer solution at identical concentration. Static light scattering and small-angle neutron scattering measurements indicate the presence of large-scale static structures in the solution. Reasonable agreement is found between the osmotic moduli obtained from light scattering measurements and macroscopic osmotic observations.  相似文献   

9.
The persistence length and the overlap concentration(c~*) of poly(ethylene oxide)(PEO) and hydroxyethylcellulose(HEC) with similar molecular weight in 1×TBE buffer were studied by laser light scattering and viscometry.Their effect on DNA separation was investigated by capillary electrophoresis.It was determined that the persistence length of HEC was at least 5 times higher than that of PEO.Therefore,the c~* of HEC was smaller than that of PEO by a factor of ca.2.5.It was also found that the c~* values de...  相似文献   

10.
Small angle neutron scattering (SANS) measurements and osmotic swelling pressure measurements are reported for polyelectrolyte gels and solutions under nearly physiological conditions. A synthetic polymer (sodium-polyacrylate) and three biopolymers (DNA, hyaluronic acid, and polyaspartic acid) are studied. The neutron scattering response of these anionic polyelectrolytes is closely similar, indicating that at larger length scales the organization of the polymer molecules is not significantly affected by the fine details of the molecular architecture (e.g., size and chemical structure of the monomer unit, type of polymer backbone). The results suggest that specific interactions between the polyelectrolyte chains and the surrounding monovalent cations are negligible. It is found that the osmotic compression modulus of these biopolymer solutions determined from the analysis of the SANS response decreases with increasing chain persistence length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3679–3686, 2006  相似文献   

11.
Formation and structure of micelles from two amphiphilic polystyrene-block-poly(ethylene oxide) (PS-PEO) diblock copolymers (PS mol.wt. 1000; PEO mol.wt. 3000 and 5000) were examined by surface tension, viscosity, steady state fluorescence, dynamic light scattering (DLS), small angle neutron scattering (SANS), and cryo-transmission electron microscopy (cryo-TEM). The critical micelle concentration (CMC) of the copolymers in aqueous solution was ca. 0.05%; micelle hydrodynamic diameter was 30–35 nm with a narrow size distribution. SANS studies show that the copolymers form ellipsoidal micelles with semi major axis ~23 nm and semi minor axis ~8 nm. No significant change in the structure was found with temperature and presence of salt. The copolymer micelles interaction with the ionic surfactants sodium dodecyl sulphate (SDS) and dodecyltrimethylammonium bromide (DTAB) was also examined by DLS and SANS.  相似文献   

12.
Small-angle neutron scattering (SANS) has been used to investigate the solution properties of four model polymers, two poly-amino acids [poly(lysine) and poly(proline)], and two water-soluble synthetic polymers [poly(acrylic acid) and poly(ethylene oxide)]. In each case, one of the two polymers is charged, while the other is neutral. SANS measurements were made in the semi-dilute concentration regime in two different solvents [d-water and d-ethylene glycol]. The scattering signals were decomposed into low-Q clustering and high-Q solvation contributions. The temperature dependence of the scattering parameters was determined for poly(lysine) and poly(ethylene oxide) solutions over the temperature range of 13 to 82 °C. Analysis of the SANS spectra revealed that with increasing temperature, the solvation intensity increased in both solvents, while the clustering intensity increased in d-water and decreased in d-ethylene glycol. Significant differences were observed between the SANS spectra of charged and neutral polymer solutions. However, biopolymers and synthetic polymers exhibited qualitatively similar behavior.  相似文献   

13.
The fuzzy cylinder theory, originally proposed for conventional polymer solutions, was applied to wormlike micellar solutions to take into account effects of the intermicellar collision and hydrodynamic interaction on the self-diffusion of wormlike micelles in solution at finite concentrations. Previously reported apparent hydrodynamic radius data obtained by dynamic light scattering for non-entangled wormlike micelles formed in aqueous solution by non-ionic surfactants, polyoxyethylene monoalkyl ethers C(i)E(j), were analyzed by this theory to estimate the persistence length q of the wormlike micelles. The results of q estimated were consistent with those obtained from radius of gyration data obtained by static light scattering.  相似文献   

14.
In this paper, the conformation and dynamics properties of polyethylene oxide (PEO) and polypropylene oxide (PPO) polymer chains at 298 K have been studied in the melt and at infinite dilution condition in water, methanol, chloroform, carbon tetrachloride, and n-heptane using molecular dynamics simulations. The calculated density of PEO melt with chain lengths of n = 2, 3, 4, 5 and, for PPO, n = 7 are in good agreement with the available experimental data. The conformational properties of PEO and PPO show an increasing gauche preference for the O-C-C-O dihedral in the following order water>methanol>chloroform>carbon tetrachloride = n-heptane. On the contrary, the preference for trans conformation has a maximum in carbon tetrachloride and n-heptane followed in the order by chloroform, methanol, and water. The PEO conformational preferences are in qualitative agreement with results of NMR studies. PEO chains formed different types of hydrogen bonds with polar solvent molecules. In particular, the occurrence of bifurcated hydrogen bonding in chloroform was also observed. Radii of gyration of PEO chains of length larger than n = 9 monomers showed a good agreement with light scattering data in water and in methanol. For the shorter chains the observed deviations are probably due to the enhanced hydrophobic effects caused by the terminal methyl groups. For PEO the fitting of end-to-end distance distributions with the semi-flexible chain model at 298 K provided persistence lengths of 0.375 and 0.387 nm in water and methanol, respectively. Finally, the radius of gyration of Pluronic P85 turned out to be 2.25 ± 0.4 nm at 293 K in water in agreement with experimental data.  相似文献   

15.
Highly stable and reproducible molecular-colloidal water solutions of C60 fullerenes (FWS) obtained by transferring fullerenes from an organic solution into an aqueous phase with the help of ultrasonic treatment are investigated by means of small-angle neutron scattering (SANS). A polydispersity in the size of detected particles up to 84 nm is revealed. These particles are slightly anisotropic and have a characteristic size of approximately 70 nm. Along with it, there are some indications that a significant part of fullerenes composes particles with the size of the order of 1 nm. The contrast variation based on mixtures of light and heavy water shows that the mean scattering length density of the particles is close to that of the packed fullerene associates as well as that the characteristic size of possible fluctuations of the scattering length density within the particles does not exceed 2 nm. A smooth surface resulting in the Porod law for the scattering is detected. A number of models discussed in the literature are considered with respect to the SANS data.  相似文献   

16.
The analysis of latex particles by small-angle scattering (small-angle X-ray scattering, SAXS; small-angle neutron scattering, SANS) is reviewed. Small-angle scattering techniques give information on the radial structure of the particles as well as on their spatial correlation. Recent progress in instrumentation allows to extend SANS and SAXS to the q-range of light scattering. Moreover, contrast variation employed in SANS and SAXS studies may lead to an unambiguous determination of the radial scattering length density of the particles in situ, i.e. in suspension. Hence, these techniques are highly valuable for a comprehensive analysis of polymer colloids as shown by the examples discussed herein.  相似文献   

17.
A simple low-energy two-step dilution process has been applied in oil/surfactant/water systems with pentaoxyethylene lauryl ether (C12E5), dodecyldimethylammonium bromide, sodium bis(2-ethylhexyl)sulfosuccinate, sodium n-dodecyl sulfate-pentanol, and hexadecyltrimethylammonium bromide-pentanol. Appropriate formulations were chosen for the concentrate to be diluted with water to generate oil-in-water (O/W) emulsions or nanoemulsions. For the system of decane/C12E5/water, bluish, transparent nanoemulsions having droplet radii of the order of 15 nm were formed, only when the initial concentrate was a bicontinuous microemulsion, whereas opaque emulsions were generated if the concentrate began in an emulsion-phase region. Nanoemulsions generated in the system decane/C12E5/water have been investigated both by dynamic light scattering (DLS) and contrast-variation small-angle neutron scattering (SANS). The SANS profiles show that nanodroplets exist as spherical core-shell (decane-C12E5) particles, which suffer essentially no structural change on dilution with water, at least for volume fractions phi down to 0.060. These results suggest that the nanoemulsion droplet structure is mainly controlled by the phase behavior of the initial concentrate and is largely independent of dilution. A discrepancy between apparent nanoemulsion droplet sizes was observed by comparing DLS and SANS data, which is consistent with long-range droplet interactions occurring outside of the SANS sensitivity range. These combined phase behavior, SANS, and DLS results suggest a different reason for the stability/instability of nanoemulsions compared with earlier studies, and here it is proposed that a general mechanism for nanoemulsion formation is homogeneous nucleation of oil droplets during the emulsification.  相似文献   

18.
The association between a highly branched polyelectrolyte with ionizable groups, polyethylene imine (PEI), and an anionic surfactant, sodium dodecyl sulfate (SDS), has been investigated at two pH values, using small-angle neutron and light scattering. The scattering data allow us to obtain a detailed picture of the association structures formed. Small-angle neutron scattering (SANS) measurements in solutions containing highly charged PEI at low pH and low SDS concentrations indicate the presence of disklike aggregates. The aggregates change to a more complex three-dimensional structure with increasing surfactant concentration. One pronounced feature in the scattering curves is the presence of a Bragg-like peak at high q-values observed at a surfactant concentration of 4.2 mM and above. This scattering feature is attributed to the formation of a common well-ordered PEI/SDS structure, in analogue to what has been reported for other polyelectrolyte-surfactant systems. Precipitation occurred at the charge neutralization point, and X-ray diffraction measurements on the precipitate confirmed the existence of an ordered structure within the PEI/SDS aggregates, which was identified as a lamellar internal organization. Polyethylene imine has a low charge density in alkaline solutions. At pH 10.1 and under conditions where the surfactant was contrast matched, the SANS scattering curves showed only small changes with increasing surfactant concentration. This suggests that the polymer acts as a template onto which the surfactant molecules aggregate. Data from both static light scattering and SANS recorded under conditions where SDS and to a lower degree PEI contribute to the scattering were found to be consistent with a structure of stacked elliptic bilayers. These structures increased in size and became more compact as the surfactant concentration was increased up to the charge neutralization point.  相似文献   

19.
Hu  Wen-tao  Yang  Hua  Cheng  He  Hu  Hai-qing 《高分子科学》2017,35(9):1156-1164
One-pot polymerization with macroinitiator is supposed to be a robust, facile way to synthesize well-defined coreshell nanoparticles with fixed shell thickness. To testify this, we investigated the temperature-depending morphology evolution of polystyrene(PS) core/poly(N-isopropylacrylamide)(PNIPAM) shell microgel synthesized by one-pot polymerization with PNIPAM-RAFT as macroinitiator in dimethylformamide(DMF) by transmission electron microscopy(TEM), dynamic/static light scattering(DLS/SLS) and small angle neutron scattering(SANS). It is revealed that the microgel has a core-shell structure, i.e., the core is made of pure PS, but the shell is composed of both PNIPAM-RAFT macroinitiator and crosslinked PS. In fact, there are 92.0 wt% D2 O, 6.7 wt% PNIPAM and 1.3 wt% PS in the shell in its aqueous dispersion at 21 °C; therefore, its shell thickness is much larger than the extended chain length of the macroinitiator as revealed by both SANS and DLS observations. Competitive growth of styrene, divinylbenzene and PNIPAM macroinitiator as well as possible chain transfer from amine proton of PNIPAM side chain may lead to the larger shell thickness, compared with the extended chain length of the macroinitiator. Our work can shed light on the real morphology control in one-pot polymerization.  相似文献   

20.
Monodispersed poly(N‐isopropylacrylamide) (PNIPAM) nanoparticles, with hydrodynamic radius less than 50 nm at room temperature, have been synthesized in the presence of a large amount of emulsifiers. These microgel particles undergo a swollen–collapsed volume transition in an aqueous solution when the temperature is raised to around 34 °C. The volume transition and structure changes of the microgel particles as a function of temperature are probed using laser light scattering and small angle neutron scattering (SANS) with the objective of determining the small particle internal structure and particle–particle interactions. Apart from random fluctuations in the crosslinker density below the transition temperature, we find that, within the resolution of the experiments, these particles have a uniform radial crosslinker density on either side of the transition temperature. This result is in contrast to previous reports on the heterogeneous structures of larger PNIPAM microgel particles, but in good agreement with recent reports based on computer simulations of smaller microgels. The particle interactions change across the transition temperature. At temperatures below the transition, the interactions are described by a repulsive interaction far larger than that expected for a hard sphere contact potential. Above the volume transition temperature, the potential is best described by a small, attractive interaction. Comparison of the osmotic second virial coefficient from static laser light scattering at low concentrations with similar values determined from SANS at 250‐time greater concentration suggests a strong concentration dependence of the interaction potential. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 849–860, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号