首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we study one-dimensional backward stochastic differential equations with continuous coefficients. We show that if the generator f is uniformly continuous in (y, z), uniformly with respect to (t, ω), and if the terminal value ξ ∈L p (Ω, ? T , P) with 1 < p ≤ 2, the backward stochastic differential equation has a unique L p solution.  相似文献   

2.
In this paper, we study the existence of anti‐periodic solutions for the first order evolution equation in a Hilbert space H, where G : H → ? is an even function such that ?G is a mapping of class (S+) and f : ? → ? satisfies f(t + T) = –f(t) for any t ∈ ? with f(·) ∈ L2(0, T; H). (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We study special regularity and decay properties of solutions to the IVP associated to the k-generalized KdV equations. In particular, for datum u 0 ∈ H 3/4+ (?) whose restriction belongs to H l ((b, ∞)) for some l ∈ ?+ and b ∈ ? we prove that the restriction of the corresponding solution u(·, t) belongs to H l ((β, ∞)) for any β ∈ ? and any t ∈ (0, T). Thus, this type of regularity propagates with infinite speed to its left as time evolves.  相似文献   

4.
We consider an inverse boundary value problem for the heat equation ? t u = div (γ? x u) in (0, T) × Ω, u = f on (0, T) × ?Ω, u| t=0 = u 0, in a bounded domain Ω ? ? n , n ≥ 2, where the heat conductivity γ(t, x) is piecewise constant and the surface of discontinuity depends on time: γ(t, x) = k 2 (x ∈ D(t)), γ(t, x) = 1 (x ∈ Ω?D(t)). Fix a direction e* ∈ 𝕊 n?1 arbitrarily. Assuming that ?D(t) is strictly convex for 0 ≤ t ≤ T, we show that k and sup {ex; x ∈ D(t)} (0 ≤ t ≤ T), in particular D(t) itself, are determined from the Dirichlet-to-Neumann map : f → ?ν u(t, x)|(0, T)×?Ω. The knowledge of the initial data u 0 is not used in the proof. If we know min0≤tT (sup xD(t) x·e*), we have the same conclusion from the local Dirichlet-to-Neumann map. Numerical examples of stationary and moving circles inside the unit disk are shown. The results have applications to nondestructive testing. Consider a physical body consisting of homogeneous material with constant heat conductivity except for a moving inclusion with different conductivity. Then the location and shape of the inclusion can be monitored from temperature and heat flux measurements performed at the boundary of the body. Such a situation appears for example in blast furnaces used in ironmaking.  相似文献   

5.
An approximation Ansatz for the operator solution, U(z′,z), of a hyperbolic first-order pseudodifferential equation, ? z  + a(z,x,D x ) with Re (a) ≥ 0, is constructed as the composition of global Fourier integral operators with complex phases. An estimate of the operator norm in L(H (s),H (s)) of these operators is provided, which yields a convergence result for the Ansatz to U(z′,z) in some Sobolev space as the number of operators in the composition goes to ∞.  相似文献   

6.
For the system T′(t) + p(t) T(t) + q(t) T(t ? τ) = ∝0tK(t ? μ) T(μ) for t ? 0, T(t) = g(t) for t ∈ [?τ, 0], conditions have been obtained which ensure that a solution of this system is dominated by a nonoscillatory solution in the interval ¦τ, ∞).  相似文献   

7.
This work deals with the convergence and stability of Runge–Kutta methods for systems of differential equation with piecewise continuous arguments x(t) = Px(t)+Qx([t+1∕2]) under two cases for coe?cient matrix. First, when P and Q are complex matrices, the su?cient condition under which the analytic solution is asymptotically stable is given. It is proven that the Runge–Kutta methods are convergent with order p. Moreover, the su?cient condition under which the analytical stability region is contained in the numerical stability region is obtained. Second, when P and Q are commutable Hermitian matrices, using the theory of characteristic, the necessary and su?cient conditions under which the analytic solution and the numerical solution are asymptotically stable are presented, respectively. Furthermore, whether the Runge–Kutta methods preserve the stability of analytic solution are investigated by the theory of Padé approximation and order star. To demonstrate the theoretical results, some numerical experiments are adopted.  相似文献   

8.
We study the creation and propagation of exponential moments of solutions to the spatially homogeneous d-dimensional Boltzmann equation. In particular, when the collision kernel is of the form |v ? v *|β b(cos (θ)) for β ∈ (0, 2] with cos (θ) = |v ? v *|?1(v ? v *)·σ and σ ∈ 𝕊 d?1, and assuming the classical cut-off condition b(cos (θ)) integrable in 𝕊 d?1, we prove that there exists a > 0 such that moments with weight exp (amin {t, 1}|v|β) are finite for t > 0, where a only depends on the collision kernel and the initial mass and energy. We propose a novel method of proof based on a single differential inequality for the exponential moment with time-dependent coefficients.  相似文献   

9.
We assume that Ωt is a domain in ?3, arbitrarily (but continuously) varying for 0?t?T. We impose no conditions on smoothness or shape of Ωt. We prove the global in time existence of a weak solution of the Navier–Stokes equation with Dirichlet's homogeneous or inhomogeneous boundary condition in Q[0, T) := {( x , t);0?t?T, x ∈Ωt}. The solution satisfies the energy‐type inequality and is weakly continuous in dependence of time in a certain sense. As particular examples, we consider flows around rotating bodies and around a body striking a rigid wall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The paper deals with the following second order Dirichlet boundary value problem with p ∈ ? state-dependent impulses: z″(t) = f (t,z(t)) for a.e. t ∈ [0, T], z(0) = z(T) = 0, z′(τ i +) ? z′(τ i ?) = I i (τ i , z(τ i )), τ i = γ i (z(τ i )), i = 1,..., p. Solvability of this problem is proved under the assumption that there exists a well-ordered couple of lower and upper functions to the corresponding Dirichlet problem without impulses.  相似文献   

11.
Our aim in this paper is to present a sufficient condition for the oscillation of the second order differential equation with mixed argument [formula] We compare (*) with the first order advanced equation of the form z′(t) − q2(t)z(σ(t)) = 0.  相似文献   

12.
Let K be a nonempty closed and convex subset of a real reflexive Banach space X that has weakly sequentially continuous duality mapping J. Let T: K → K be a multivalued non-expansive non-self-mapping satisfying the weakly inwardness condition as well as the condition T(y) = {y} for any y ∈ F(T) and such that for a contraction f: K → K and any t ∈ (0, 1), there exists x t  ∈ K satisfying x t  ∈ tf(x t ) + (1 ? t)Tx t . Then it is proved that {x t } ? K converges strongly to a fixed point of T, which is also a solution of certain variational inequality. Moreover, the convergence of two explicit methods are also investigated.  相似文献   

13.
Let K be a nonempty closed and convex subset of a real Banach space E. Let T: K → E be a continuous pseudocontractive mapping and f:K → E a contraction, both satisfying weakly inward condition. Then for t ? (0, 1), there exists a sequence {y t } ? K satisfying the following condition: y t  = (1 ? t)f(y t ) + tT(y t ). Suppose further that {y t } is bounded or F(T) ≠  and E is a reflexive Banach space having weakly continuous duality mapping J ? for some gauge ?. Then it is proved that {y t } converges strongly to a fixed point of T, which is also a solution of certain variational inequality. Moreover, an explicit iteration process that converges strongly to a common fixed point of a finite family of nonexpansive mappings and hence to a solution of a certain variational inequality is constructed.  相似文献   

14.
《随机分析与应用》2013,31(4):865-894
Abstract

It may happen that there is not a finite maximum order bound for numerical approximations of stochastic processes X = (X t : 0 ≤ t ≤ T) satisfying Stratonovich stochastic differential equations (SDEs) with some commutative structure along an appropriate functional V(t, X t ). This statement can be proven with respect to the concept of mean square convergence under the assumption of “infinite smoothness” of drift a(t, x) and diffusion coefficients b j (t, x) and with finite initial second moments. As a result, we obtain an infinite series expansion of the conditional expectation 𝔼[V(t, X t )|? t N ] on any fixed finite time interval [0, T], provided that the information is collected by discretized σ‐field ? T N  = σ{W t 0 , W t 1 , …, W t N?1 , W T } at N + 1 given time instants t i  ∈ [0, T] with t 0 ≤ t 1 ≤ ··· ≤ t N?1 ≤ t N  = T.  相似文献   

15.
Let ?(t) (t ∈ R n be a radial function. Let f(z) be the Laplace transform of ?(t). Then a theorem due to A. Gonzá Domínguez shows that f(z) can be expressed as a Hankel transform. I prove two representation formulae which express the Laplace transform of radial functions by means of the mth-order derivative of the Hankel transform of order 0 and ? ½.  相似文献   

16.
We consider the perturbed simple pendulum equation u ″(t) + μ |u (t)|p –1u (t) = λ sin u (t), tI ? (–T, T), u (t) > 0, tI, uT) = 0, where p > 1 is a constant,λ > 0 and μ ∈ R are parameters. The purpose of this paper is to clarify the structure of the solution set. To do this, we study precisely the asymptotic shape of the solutions when λ ? 1 as well as the asymptotic behavior of variational eigenvalue μ (λ) as λ → ∞. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We consider a suitable weak solution to the three‐dimensional Navier‐Stokes equations in the space‐time cylinder Ω × ]0, T[. Let Σ be the set of singular points for this solution and Σ (t) ≡ {(x, t) ∈ Σ}. For a given open subset ω ? Ω and for a given moment of time t ∈]0, T[, we obtain an upper bound for the number of points of the set Σ(t) ? ω. © 2001 John Wiley & Sons, Inc.  相似文献   

18.
We obtain an existence result for global solutions to initial-value problems for Riccati equations of the form R′(t) + TR(t) + R(t)T = Tρ A(t)T1?ρ + Tρ B(t)T1?ρ R(t) + R(t)TρC(t) T1?ρ + R(t)TρD(t)T1?ρ R(t), R(0)=R0, where 0 ? ρ ? 1 and where the functions R and A through D take on values in the cone of non-negative bounded linear operators on L1 (0, W; μ). T is an unbounded multiplication operator. This problem is of particular interest in case ρ = 1 since it arisess in the theories of particle transport and radiative transfer in a slab. However, in this case there are some serious difficulties associated with this equation, which lead us to define a solution for the case ρ = 1 as the limit of solutions for the cases 0 < ρ < 1.  相似文献   

19.
It is shown that the first order multivalued equation for V = V(t, x, y, z) involving the sum of two subdifferentials composed with the partials of V (Vt +f(t, x, y, z) · ▽xV + β(Vy) + γ(Vz) + h(t, x, y, z) ? 0 a.e.) has a Lipschitz solution. This solution is shown to be the value of a differential game in which the players are restricted to choosing monotone nondecreasing functions of time. Accordingly, the multivalued equation is interpreted as the corresponding Hamilton-Jacobi equation of the game.  相似文献   

20.
Let X be a real Banach space, ω : [0, +∞) → ? be an increasing continuous function such that ω(0) = 0 and ω(t + s) ≤ ω(t) + ω(s) for all t, s ∈ [0, +∞). According to the infinite dimensional analog of the Osgood theorem if ∫10 (ω(t))?1 dt = ∞, then for any (t0, x0) ∈ ?×X and any continuous map f : ?×XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all t ∈ ?, x, yX, the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has a unique solution in a neighborhood of t0. We prove that if X has a complemented subspace with an unconditional Schauder basis and ∫10 (ω(t))?1 dt < ∞ then there exists a continuous map f : ? × XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all (t, x, y) ∈ ? × X × X and the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has no solutions in any interval of the real line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号