首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppose that ω(φ, ·) is the dyadic modulus of continuity of a compactly supported function φ in L 2(?+) satisfying a scaling equation with 2 n coefficients. Denote by α φ the supremum for values of α > 0 such that the inequality ω(φ, 2?j ) ≤ C2 ?αj holds for all j ∈ ?. For the cases n = 3 and n = 4, we study the scaling functions φ generating multiresolution analyses in L 2(?+) and the exact values of α φ are calculated for these functions. It is noted that the smoothness of the dyadic orthogonal wavelet in L 2(?+) corresponding to the scaling function φ coincides with α φ .  相似文献   

2.
We study the Riesz potentials Iαf on the generalized Lebesgue spaces Lp(·)(?d), where 0 < α < d and Iαf(x) ? ∫equation/tex2gif-inf-3.gif |f(y)| |xy|αd dy. Under the assumptions that p locally satisfies |p(x) – p(x)| ≤ C/(– ln |xy|) and is constant outside some large ball, we prove that Iα : Lp(·)(?d) → Lp?(·)(?d), where . If p is given only on a bounded domain Ω with Lipschitz boundary we show how to extend p to on ?d such that there exists a bounded linear extension operator ? : W1,p(·)(Ω) ? (?d), while the bounds and the continuity condition of p are preserved. As an application of Riesz potentials we prove the optimal Sobolev embeddings Wk,p(·)(?d) ?Lp*(·)(Rd) with and W1,p(·)(Ω) ? Lp*(·)(Ω) for k = 1. We show compactness of the embeddings W1,p(·)(Ω) ? Lq(·)(Ω), whenever q(x) ≤ p*(x) – ε for some ε > 0. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Upper and lower bounds for generalized Christoffel functions, called Freud-Christoffel functions, are obtained. These have the form λn,p(W,j,x) = infPWLp(R)/|P(j)(X)| where the infimum is taken over all polynomials P(x) of degree at most n − 1. The upper and lower bounds for λn,p(W,j,x) are obtained for all 0 < p ∞ and J = 0, 1, 2, 3,… for weights W(x) = exp(−Q(x)), where, among other things, Q(x) is bounded in [− A, A], and Q″ is continuous in β(−A, A) for some A > 0. For p = ∞, the lower bounds give a simple proof of local and global Markov-Bernstein inequalities. For p = 2, the results remove some restrictions on Q in Freud's work. The weights considered include W(x) = exp(− ¦x¦α/2), α > 0, and W(x) = exp(− expx¦)), > 0.  相似文献   

4.
We study random subgraphs of an arbitrary finite connected transitive graph ?? obtained by independently deleting edges with probability 1 ? p. Let V be the number of vertices in ??, and let Ω be their degree. We define the critical threshold pc = pc (??, λ) to be the value of p for which the expected cluster size of a fixed vertex attains the value λV1/3, where λ is fixed and positive. We show that, for any such model, there is a phase transition at pc analogous to the phase transition for the random graph, provided that a quantity called the triangle diagram is sufficiently small at the threshold pc. In particular, we show that the largest cluster inside a scaling window of size |p ? pc| = Θ(Ω?1V?1/3) is of size Θ(V2/3), while, below this scaling window, it is much smaller, of order O(??2 log(V?3)), with ? = Ω(pc ? p). We also obtain an upper bound O(Ω(p ? pc)V) for the expected size of the largest cluster above the window. In addition, we define and analyze the percolation probability above the window and show that it is of order Θ(Ω(p ? pc)). Among the models for which the triangle diagram is small enough to allow us to draw these conclusions are the random graph, the n‐cube and certain Hamming cubes, as well as the spread‐out n‐dimensional torus for n > 6. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005  相似文献   

5.
We study the regularity properties of the Hamilton-Jacobi flow equation and infimal convolution in the case where the initial datum function is continuous and lies in a given Sobolev-space W 1,p (? n ). We prove that under suitable assumptions it holds for solutions w(x, t) that D x w(·, t) → Du(·) in L p (? n ) as t → 0. Moreover, we construct examples showing that our results are essentially optimal.  相似文献   

6.
In this article we investigate the frame properties and closedness for the shift invariant space Vp(F) = { ?i=1r ?j ? \Zd di(j) fi (·-j):  ( di(j) )j ? \Zd ? lp }, \q 1 £ p £ ¥ . \displaystyle V_p(\Phi) = \left\{ \sum_{i=1}^r \sum_{j\in \Zd} d_i(j) \phi_i (\cdot-j): \ \left( d_i(j) \right)_{j\in \Zd}\in \ell^p \right\}, \q 1\le p \le \infty~. We derive necessary and sufficient conditions for an indexed family {fi(·-j): 1 £ ir, j ? \Zd}\{\phi_i(\cdot-j):\ 1\le i\le r, j\in \Zd\} to constitute a pp-frame for Vp(F)V_p(\Phi), and to generate a closed shift invariant subspace of LpL^p. A function in the LpL^p-closure of Vp(F)V_p(\Phi) is not necessarily generated by lp\ell^p coefficients. Hence we often hope that Vp(F)V_p(\Phi) itself is closed, i.e., a Banach space. For p 1 2p\ne 2, this issue is complicated, but we show that under the appropriate conditions on the frame vectors, there is an equivalence between the concept of pp-frames, Banach frames, and the closedness of the space they generate. The relation between a function f ? Vp(F)f \in V_p(\Phi) and the coefficients of its representations is neither obvious, nor unique, in general. For the case of pp-frames, we are in the context of normed linear spaces, but we are still able to give a characterization of pp-frames in terms of the equivalence between the norm of ff and an lp\ell^p-norm related to its representations. A Banach frame does not have a dual Banach frame in general, however, for the shift invariant spaces Vp(F)V_p(\Phi), dual Banach frames exist and can be constructed.  相似文献   

7.
Let W be a nonnegative summable function whose logarithm is also summable with respect to the Lebesgue measure on the unit circle. For 0?<?p?<?∞ , Hp (W) denotes a weighted Hardy space on the unit circle. When W?≡?1, H p(W) is the usual Hardy space Hp . We are interested in Hp ( W)+ the set of all nonnegative functions in Hp ( W). If p?≥?1/2, Hp + consists of constant functions. However Hp ( W)+ contains a nonconstant nonnegative function for some weight W. In this paper, if p?≥?1/2 we determine W and describe Hp ( W)+ when the linear span of Hp ( W)+ is of finite dimension. Moreover we show that the linear span of Hp (W)+ is of infinite dimension for arbitrary weight W when 0?<?p?<?1/2.  相似文献   

8.
Let W ì \BbbR2\Omega \subset \Bbb{R}^2 denote a bounded domain whose boundary ?W\partial \Omega is Lipschitz and contains a segment G0\Gamma_0 representing the austenite-twinned martensite interface. We prove infu ? W(W) òW j(?u(x,y))dxdy=0\displaystyle{\inf_{{u\in \cal W}(\Omega)} \int_\Omega \varphi(\nabla u(x,y))dxdy=0}  相似文献   

9.
For an arbitrary differential operator P of order p on an open set X ? R n, the Laplacian is defined by Δ = P*P. It is an elliptic differential operator of order 2p provided the symbol mapping of P is injective. Let O be a relatively compact domain in X with smooth boundary, and Bj(j = 0…,p — 1) be a Dirichlet system of order p ? 1 on ?O. By {Cj} we denote the Dirichlet system on ?O adjoint for {Bj} with respect to the Green formula for P. The Hardy space H2(O) is defined to consist of all the solutions f of Δf = 0 in O of finite order of growth near the boundary such that the weak boundary values of the expression {Bjf} and {Cj(Pf)} belong to the Lebesgue space L2(?O). Then the Dirichlet problem consists of finding a solution f ? H2(O) with prescribed data {Bjf} on ?O. We develop the classical Fischer-Riesz equations method to derive a solvability condition of the Dirichlet problem as well as an approximate formula for solutions.  相似文献   

10.
Let {Vk} be a nested sequence of closed subspaces that constitute a multiresolution analysis of L2( ). We characterize the family Φ = {φ} where each φ generates this multiresolution analysis such that the two-scale relation of φ is governed by a finite sequence. In particular, we identify the ε Φ that has minimum support. We also characterize the collection Ψ of functions η such that each η generates the orthogonal complementary subspaces Wk of Vk, . In particular, the minimally supported ψ ε Ψ is determined. Hence, the “B-spline” and “B-wavelet” pair (, ψ) provides the most economical and computational efficient “spline” representations and “wavelet” decompositions of L2 functions from the “spline” spaces Vk and “wavelet” spaces Wk, k . A very general duality principle, which yields the dual bases of both {(·−j):j and {η(·−j):j } for any η ε Ψ by essentially interchanging the pair of two-scale sequences with the pair of decomposition sequences, is also established. For many filtering applications, it is very important to select a multiresolution for which both and ψ have linear phases. Hence, “non-symmetric” and ψ, such as the compactly supported orthogonal ones introduced by Daubechies, are sometimes undesirable for these applications. Conditions on linear-phase φ and ψ are established in this paper. In particular, even-order polynomial B-splines and B-wavelets φm and ψm have linear phases, but the odd-order B-wavelet only has generalized linear phases.  相似文献   

11.
On an irregular domain G ⊂ ℝ n of a certain type, we introduce spaces of functions of fractional smoothness s > 0. We prove embedding theorems relating these spaces to the Sobolev spaces W p m (G) and Lebesgue spaces L p (G).  相似文献   

12.
We are concerned with the analyticity of the (C 0) semigroups generated by the realizations of the Laplacian Δu:=u″ in the spaces C[0, 1] and W 1, p (0, 1) with the general Wentzell boundary conditions Δu(j)+β ju″(j)+γ ju(j)=0 for j=0,1. Here 1<p<∞ and β j , γ j are arbitrary complex numbers for j=0,1.  相似文献   

13.
14.
We consider an algebra of operator sequences containing, among others, the approximation sequences to convolution type operators on cones acting on Lp(\mathbb R2)L^{p}(\mathbb {R}^2), with 1 < p < ∞. To each operator sequence (An) we associate a family of operators Wx(An) ? L(Lp(\mathbb R2))W_{x}(A_{n}) \in \mathcal {L}(L^{p}(\mathbb {R}^2)) parametrized by x in some index set. When all Wx(An) are Fredholm, the so-called approximation numbers of An have the α-splitting property with α being the sum of the kernel dimensions of Wx(An). Moreover, the sum of the indices of Wx(An) is zero. We also show that the index of some composed convolution-like operators is zero. Results on the convergence of the e\epsilon-pseudospectrum, norms of inverses and condition numbers are also obtained.  相似文献   

15.
We establish the theory of Orlicz-Hardy spaces generated by a wide class of functions.The class will be wider than the class of all the N-functions.In particular,we consider the non-smooth atomic decomposition.The relation between Orlicz-Hardy spaces and their duals is also studied.As an application,duality of Hardy spaces with variable exponents is revisited.This work is different from earlier works about Orlicz-Hardy spaces H(Rn)in that the class of admissible functions is largely widened.We can deal with,for example,(r)≡(rp1(log(e+1/r))q1,0r 6 1,rp2(log(e+r))q2,r1,with p1,p2∈(0,∞)and q1,q2∈(.∞,∞),where we shall establish the boundedness of the Riesz transforms on H(Rn).In particular,is neither convex nor concave when 0p11p2∞,0p21p1∞or p1=p2=1 and q1,q20.If(r)≡r(log(e+r))q,then H(Rn)=H(logH)q(Rn).We shall also establish the boundedness of the fractional integral operators I of order∈(0,∞).For example,I is shown to be bounded from H(logH)1./n(Rn)to Ln/(n.)(log L)(Rn)for 0n.  相似文献   

16.
Let \({M_\beta }\) be the fractional maximal function. The commutator generated by \({M_\beta }\) and a suitable function b is defined by \([{M_\beta },b]f = {M_\beta }(bf) - b{M_\beta }(f)\) . Denote by P(? n ) the set of all measurable functions p(·): ? n → [1,∞) such that $1 < p_ - : = \mathop {es\sin fp(x)}\limits_{x \in \mathbb{R}^n } andp_ + : = \mathop {es\operatorname{s} \sup p(x) < \infty }\limits_{x \in \mathbb{R}^n } ,$ and by B(? n ) the set of all p(·) ∈ P(? n ) such that the Hardy-Littlewood maximal function M is bounded on L p(·)(? n ). In this paper, the authors give some characterizations of b for which \([{M_\beta },b]\) is bounded from L p(·)(? n ) into L q(·)(? n ), when p(·) ∈ P(? n ), 0 < β < n/p + and 1/q(·) = 1/p(·) ? β/n with q(·)(n ? β)/nB(? n ).  相似文献   

17.
Let Lf(x)=-\frac1w?i,j ?i(ai,j(·)?jf)(x)+V(x)f(x){\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)} with the non-negative potential V belonging to reverse H?lder class with respect to the measure ω(x)dx, where ω(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying l-1w(x)|x|2 £ ?ni,j=1ai,j(x)xixj £ lw(x)|x|2.{\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. } We obtain some estimates for VaL-a{V^{\alpha}\mathcal{L}^{-\alpha}} on the weighted L p spaces and we study the weighted L p boundedness of the commutator [b, Va L-a]{[b, V^{\alpha} \mathcal{L}^{-\alpha}]} when b ? BMOw{b\in BMO_\omega} and 0 < α ≤ 1.  相似文献   

18.
In this paper we investigate the problem of the equiconvergence on T N = [-π, π) N of the expansions in multiple trigonometric series and Fourier integral of functions fL p (T N ) and gL p (? N ), where p > 1, N ≥ 3, g(x) = f(x) on T N , in the case when the “rectangular partial sums” of the indicated expansions, i.e.,– n (x; f) and J α(x; g), respectively, have indices n ∈ ? N and α ∈ ? N (n j = [α j ], j = 1,...,N, [t] is the integer part of t ∈ ?1), in those certain components are the elements of “lacunary sequences”.  相似文献   

19.
Let μ be a measure on ℝn that satisfies the estimate μ(B r(x))≤cr α for allx ∈n and allr ≤ 1 (B r(x) denotes the ball of radius r centered atx. Let ϕ j,k (ɛ) (x)=2 nj2ϕ(ɛ)(2 j x-k) be a wavelet basis forj ∈ ℤ, κ ∈ ℤn, and ∈ ∈E, a finite set, and letP j (T)=Σɛ,k <T j,k (ɛ) j,k (ɛ) denote the associated projection operators at levelj (T is a suitable measure or distribution). IffLs p(dμ) for 1 ≤p ≤ ∞, we show thatP j(f dμ) ∈ Lp(dx) and ||P j (fdμ)||L p(dx)c2 j((n-α)/p′))||f||L p(dμ) for allj ≥ 0. We also obtain estimates for the limsup and liminf of ||P j (fdμ)||L p(dx) under more restrictive hypotheses. Communicated by Guido Weiss  相似文献   

20.
Considering the measurable and nonnegative functions ? on the half-axis [0, ∞) such that ?(0) = 0 and ?(t) → ∞ as t → ∞, we study the operators of weak type (?, ?) that map the classes of ?-Lebesgue integrable functions to the space of Lebesgue measurable real functions on ?n. We prove interpolation theorems for the subadditive operators of weak type (?0, ?0) bounded in L (?n) and subadditive operators of weak types (?0, ?0) and (?1, ?1) in L ?(? n ) under some assumptions on the nonnegative and increasing functions ?(x) on [0, ∞). We also obtain some interpolation theorems for the linear operators of weak type (?0, ?0) bounded from L (?n) to BMO(? n). For the restrictions of these operators to the set of characteristic functions of Lebesgue measurable sets, we establish some estimates for rearrangements of moduli of their values; deriving a consequence, we obtain a theorem on the boundedness of operators in rearrangement-invariant spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号