首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stationary statistical solutions of the three-dimensional Navier–Stokes equations for incompressible fluids are considered. They are a mathematical formalization of the notion of ensemble average for turbulent flows in statistical equilibrium in time. They are also a generalization of the notion of invariant measure to the case of the three-dimensional Navier–Stokes equations, for which a global uniqueness result is not known to exist and a semigroup may not be well-defined in the classical sense. The two classical definitions of stationary statistical solutions are considered and compared, one of them being a particular case of the other and possessing a number of useful properties. Furthermore, the so-called time-average stationary statistical solutions, obtained as generalized limits of time averages of weak solutions as the averaging time goes to infinity are shown to belong to this more restrictive class. A recurrent type result is also obtained for statistical solutions satisfying an accretion condition. Finally, the weak global attractor of the three-dimensional Navier–Stokes equations is considered, and in particular it is shown that there exists a topologically large subset of the weak global attractor which is of full measure with respect to that particular class of stationary statistical solutions and which has a certain regularity property.  相似文献   

2.
The objective of this paper is to study the asymptotic behavior of solutions, in terms of the upper semi-continuous property of random attractor, of the Cahn–Hilliard–Navier–Stokes system with small additive noise. We prove the existence of a random attractor for the Cahn–Hilliard–Navier–Stokes system with small additive noise. Furthermore, we consider the stability of global attractor and prove the random attractor of the Cahn–Hilliard–Navier–Stokes system with small additive noise will convergent to the global attractor of the unperturbed Cahn–Hilliard–Navier–Stokes system when the parameter of the perturbation ε tends to zero.  相似文献   

3.
Global existence of regular solutions to the Navier–Stokes equations coupled with the heat convection in a cylindrical pipe has already been shown. In this paper, we prove the existence of the global attractor to the equations and convergence of their solutions to a stationary one. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
We study the global well-posedness and existence of uniform attractor for magnetohydrodynamic (MHD) equations. The hydrodynamic system consists of the Navier–Stokes equations for the fluid velocity and pressure coupled with a reduced from of the Maxwell equations for the magnetic field. The fluid velocity is assumed to satisfy a no-slip boundary condition, while the magnetic field is subject to a time-dependent Dirichlet boundary condition. We first establish the global existence of weak and strong solutions to Equations (1.1)-(1.4). And at this stage, we further derive the existence of a uniform attractor for Equations (1.1)-(1.4).  相似文献   

5.
The paper analyses long time behaviour of solutions of the Navier–Stokes equations in a two‐dimensional pipe‐like domain. The system is studied with perfect slip boundary conditions with arbitrary inflow conditions at infinity. The main results show the existence of global in time solutions and of an attractor for the dynamical system generated by the model. The paper also establishes an upper bound for the Hausdorff dimension of the attractor. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
We prove the existence of a global attractor for the generalized semiflow (in the sense of J.M. Ball) on the space of small samples of solutions to the 3D incompressible Navier–Stokes equations. This way to overcome the possible nonuniqueness of solutions is less radical than that of G. Sell and does not provide unique solutions. On the other hand, the existence of the global attractor does not need the unproven hypothesis of continuity of solutions required by Ball. The extension of this approach to the space of germs of solutions is also discussed.  相似文献   

7.
This paper is devoted to the evolution of Lions’s weak solutions to the inhomogeneous Navier–Stokes equations. After proving that the kinetic energy is eventually bounded, we obtain a weakly compact global attractor that all Lions’s weak solutions approach as time tends to infinity. Furthermore, the existence of attracting sets in strong topology is established for short trajectories satisfying an additional compactness condition on the density.  相似文献   

8.
We consider the 2D Navier–Stokes–Voight equation in an unbounded strip-like domain. It is shown that the semigroup generated by this equation has a global attractor in weighted Sobolev spaces.  相似文献   

9.
One investigates the problem of the existence of an attractor α of the semi-group St, generated by the solutions of the nonlinear nonstationary equations $$\frac{{\partial u}}{{\partial t}} = A(u), u|_{t = 0} = u_0 (x); S_t u_0 \equiv u(t)$$ . One proves a very general theorem on the existence of an attractor α of the semigroup St for t→∞. One gives examples of differential equations having attractors: a second-order quasilinear parabolic equation, a two-dimensional Navier—Stokes system, a monotone parabolic equation of any order. One proves a theorem on the finiteness of the Hausdorff dimension of the attractor α. One gives an estimate for the Hausdorff dimension of the attractor α for a two-dimensional Navier—Stokes system.  相似文献   

10.
In this paper, we study the dynamic stability of the three‐dimensional axisymmetric Navier‐Stokes Equations with swirl. To this purpose, we propose a new one‐dimensional model that approximates the Navier‐Stokes equations along the symmetry axis. An important property of this one‐dimensional model is that one can construct from its solutions a family of exact solutions of the three‐dimensionaFinal Navier‐Stokes equations. The nonlinear structure of the one‐dimensional model has some very interesting properties. On one hand, it can lead to tremendous dynamic growth of the solution within a short time. On the other hand, it has a surprising dynamic depletion mechanism that prevents the solution from blowing up in finite time. By exploiting this special nonlinear structure, we prove the global regularity of the three‐dimensional Navier‐Stokes equations for a family of initial data, whose solutions can lead to large dynamic growth, but yet have global smooth solutions. © 2007 Wiley Periodicals, Inc.  相似文献   

11.
In this paper, we apply Littlewood–Paley theory and Itô integral to get the global existence of stochastic Navier–Stokes equations with Coriolis force in Fourier–Besov spaces. As a comparison, we also give corresponding results of the deterministic Navier–Stokes equations with Coriolis force.  相似文献   

12.
We consider a general family of regularized Navier–Stokes and Magnetohydrodynamics (MHD) models on n-dimensional smooth compact Riemannian manifolds with or without boundary, with n≥2. This family captures most of the specific regularized models that have been proposed and analyzed in the literature, including the Navier–Stokes equations, the Navier–Stokes-α model, the Leray-α model, the modified Leray-α model, the simplified Bardina model, the Navier–Stokes–Voight model, the Navier–Stokes-α-like models, and certain MHD models, in addition to representing a larger 3-parameter family of models not previously analyzed. This family of models has become particularly important in the development of mathematical and computational models of turbulence. We give a unified analysis of the entire three-parameter family of models using only abstract mapping properties of the principal dissipation and smoothing operators, and then use assumptions about the specific form of the parameterizations, leading to specific models, only when necessary to obtain the sharpest results. We first establish existence and regularity results, and under appropriate assumptions show uniqueness and stability. We then establish some results for singular perturbations, which as special cases include the inviscid limit of viscous models and the α→0 limit in α models. Next, we show existence of a global attractor for the general model, and then give estimates for the dimension of the global attractor and the number of degrees of freedom in terms of a generalized Grashof number. We then establish some results on determining operators for the two distinct subfamilies of dissipative and non-dissipative models. We finish by deriving some new length-scale estimates in terms of the Reynolds number, which allows for recasting the Grashof number-based results into analogous statements involving the Reynolds number. In addition to recovering most of the existing results on existence, regularity, uniqueness, stability, attractor existence, and dimension, and determining operators for the well-known specific members of this family of regularized Navier–Stokes and MHD models, the framework we develop also makes possible a number of new results for all models in the general family, including some new results for several of the well-studied models. Analyzing the more abstract generalized model allows for a simpler analysis that helps bring out the core common structure of the various regularized Navier–Stokes and magnetohydrodynamics models, and also helps clarify the common features of many of the existing and new results. To make the paper reasonably self-contained, we include supporting material on spaces involving time, Sobolev spaces, and Grönwall-type inequalities.  相似文献   

13.
In this short paper, the initial value problem for the Navier‐Stokes equations with the Coriolis force is investigated. The Coriolis force appears in almost all of the models of meteorology and geophysics dealing with large‐scale phenomena. We prove that existence of uniform global large solutions to the Navier‐Stokes equations with the Coriolis force for a class of special initial data. The results obtained in this paper are different from the previous 2 types of results.  相似文献   

14.
In this article, we construct the trajectory statistical solution for the 3D incompressible Navier–Stokes equations via the natural translation semigroup and trajectory attractor. In our construction, the trajectory statistical solution is an invariant space–time probability measure which is carried by the trajectory attractor of the natural translation semigroup defined on the trajectory space, and the trajectory statistical solution possesses the invariant property under the acting of the translation semigroup.  相似文献   

15.
In this paper, we are concerned with the system of the non‐isentropic compressible Navier–Stokes equations coupled with the Maxwell equations through the Lorentz force in three space dimensions. The global existence of solutions near constant steady states is established, and the time‐decay rates of perturbed solutions are obtained. The proof for existence is due to the classical energy method, and the investigation of large‐time behavior is based on the linearized analysis of the non‐isentropic Navier–Stokes–Poisson equations and the electromagnetic part for the linearized isentropic Navier–Stokes–Maxwell equations. In the meantime, the time‐decay rates obtained by Zhang, Li, and Zhu [J. Differential Equations, 250(2011), 866‐891] for the linearized non‐isentropic Navier–Stokes–Poisson equations are improved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
We first prove the existence and regularity of the trajectory attractor for a three-dimensional system of globally modified Navier–Stokes equations. Then we use the natural translation semigroup and trajectory attractor to construct the trajectory statistical solutions in the trajectory space. In our construction the trajectory statistical solution is an invariant Borel probability measure, which is supported by the trajectory attractor and is invariant under the action of the translation semigroup. As a byproduct of the regularity of the trajectory attractor, we obtain the asymptotic regularity of the trajectory statistical solution in the sense that it is supported by a set in the trajectory space in which all weak solutions are in fact strong solutions.  相似文献   

17.
In this paper, following the techniques of Foias and Temam, we establish Gevrey class regularity of solutions to a class of dissipative equations with a general quadratic nonlinearity and a general dissipation including fractional Laplacian. The initial data is taken to be in Besov type spaces defined via “caloric extension”. We apply our result to the Navier–Stokes equations, the surface quasi-geostrophic equations, the Kuramoto–Sivashinsky equation and the barotropic quasi-geostrophic equation. Consideration of initial data in critical regularity spaces allow us to obtain generalizations of existing results on the higher order temporal decay of solutions to the Navier–Stokes equations. In the 3D case, we extend the class of initial data where such decay holds while in 2D we provide a new class for such decay. Similar decay result, and uniform analyticity band on the attractor, is also proven for the sub-critical 2D surface quasi-geostrophic equation.  相似文献   

18.
The velocity–vorticity formulation of the 3D Navier–Stokes equations was recently found to give excellent numerical results for flows with strong rotation. In this work, we propose a new regularization of the 3D Navier–Stokes equations, which we call the 3D velocity–vorticity-Voigt (VVV) model, with a Voigt regularization term added to momentum equation in velocity–vorticity form, but with no regularizing term in the vorticity equation. We prove global well-posedness and regularity of this model under periodic boundary conditions. We prove convergence of the model's velocity and vorticity to their counterparts in the 3D Navier–Stokes equations as the Voigt modeling parameter tends to zero. We prove that the curl of the model's velocity converges to the model vorticity (which is solved for directly), as the Voigt modeling parameter tends to zero. Finally, we provide a criterion for finite-time blow-up of the 3D Navier–Stokes equations based on this inviscid regularization.  相似文献   

19.
We consider a two-dimensional Navier–Stokes shear flow. There exists a unique global-in-time solution of the considered problem as well as the global attractor for the associated semigroup.Our aim is to estimate from above the dimension of the attractor in terms of given data and geometry of the domain of the flow. First we obtain a Kolmogorov-type bound on the time-averaged energy dissipation rate, independent of viscosity at large Reynolds numbers. Then we establish a version of the Lieb–Thirring inequality for a class of functions defined on the considered non-rectangular flow domain.This research is motivated by a problem from lubrication theory.  相似文献   

20.
In this paper, we study the 3D axisymmetric Navier–Stokes equations with swirl. We prove the global regularity of the 3D Navier–Stokes equations for a family of large anisotropic initial data. Moreover, we obtain a global bound of the solution in terms of its initial data in some L p norm. Our results also reveal some interesting dynamic growth behavior of the solution due to the interaction between the angular velocity and the angular vorticity fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号