首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a quadratic optimal control problem governed by a nonautonomous affine ordinary differential equation subject to nonnegativity control constraints. For a general class of interior penalty functions, we provide a first order expansion for the penalized states and adjoint states around the state and adjoint state of the original problem. Our main argument relies on the following fact: if the optimal control satisfies strict complementarity conditions for its Hamiltonian except for a set of times with null Lebesgue measure, the functional estimates for the penalized optimal control problem can be derived from the estimates of a related finite dimensional problem. Our results provide several types of efficiency measures of the penalization technique: error estimates of the control for L s norms (s in [1, +∞]), error estimates of the state and the adjoint state in Sobolev spaces W 1,s (s in [1, +∞)) and also error estimates for the value function. For the L 1 norm and the logarithmic penalty, the sharpest results are given, by establishing an error estimate for the penalized control of order ${O(\varepsilon|\log\epsilon|)}$ where ${\varepsilon >0 }$ is the (small) penalty parameter.  相似文献   

2.
This paper is devoted to an optimal control problem of Maxwell??s equations in the presence of pointwise state constraints. The control is given by a divergence-free three-dimensional vector function representing an applied current density. To cope with the divergence-free constraint on the control, we consider a vector potential ansatz. Due to the lack of regularity of the control-to-state mapping, existence of Lagrange multipliers cannot be guaranteed. We regularize the optimal control problem by penalizing the pointwise state constraints. Optimality conditions for the regularized problem can be derived straightforwardly. It also turns out that the solution of the regularized problem enjoys higher regularity which then allows us to establish its convergence towards the solution of the unregularized problem. The second part of the paper focuses on the numerical analysis of the regularized optimal control problem. Here the state and the control are discretized by Nédélec??s curl-conforming edge elements. Employing the higher regularity property of the optimal control, we establish an a priori error estimate for the discretization error in the $\boldsymbol{H}(\bold{curl})$ -norm. The paper ends by numerical results including a numerical verification of our theoretical results.  相似文献   

3.
In this article, an abstract framework for the error analysis of discontinuous finite element method is developed for the distributed and Neumann boundary control problems governed by the stationary Stokes equation with control constraints. A priori error estimates of optimal order are derived for velocity and pressure in the energy norm and the L2-norm, respectively. Moreover, a reliable and efficient a posteriori error estimator is derived. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. In particular, we consider the abstract results with suitable stable pairs of velocity and pressure spaces like as the lowest-order Crouzeix–Raviart finite element and piecewise constant spaces, piecewise linear and constant finite element spaces. The theoretical results are illustrated by the numerical experiments.  相似文献   

4.
We consider a family of parametric linear-quadratic optimal control problems with terminal and control constraints. This family has the specific feature that the class of optimal controls is changed for an arbitrarily small change in the parameter. In the perturbed problem, the behavior of the corresponding trajectory on noncritical arcs of the optimal control is described by solutions of singularly perturbed boundary value problems. For the solutions of these boundary value problems, we obtain an asymptotic expansion in powers of the small parameter ?. The asymptotic formula starts from a term of the order of 1/? and contains boundary layers. This formula is used to justify the asymptotic expansion of the optimal control for a perturbed problem in the family. We suggest a simple method for constructing approximate solutions of the perturbed optimal control problems without integrating singularly perturbed systems. The results of a numerical experiment are presented.  相似文献   

5.
In this paper, we consider the finite element approximation of an elliptic optimal control problem. Based on an assumption on the adjoint state of the continuous problem with a small parameter, which represents a regularization of the bang-bang type control problem, we derive robust a priori error estimates for optimal control and state and a posteriori error estimate is also presented. Numerical experiments confirm our theoretical results.  相似文献   

6.
We analyze the maximal output power that can be obtained from a vibration energy harvester. While recent work focused on the use of mechanical nonlinearities and on determining the optimal resistive load at steady-state operation of the transducers to increase extractable power, we propose an optimal control approach. We consider the open-circuit stiffness and the electrical time constant as control functions of linear two-port harvesters. We provide an analysis of optimal controls by means of Pontryagin’s maximum principle. By making use of geometric methods from optimal control theory, we are able to prove the bang–bang property of optimal controls. Numerical results illustrate our theoretical analysis and show potential for more than 200% improvement of harvested power compared to that of fixed controls.  相似文献   

7.
In this paper, we consider a non-overlapping domain decomposition method combined with the characteristic method for solving optimal control problems governed by linear convection–diffusion equations. The whole domain is divided into non-overlapping subdomains, and the global optimal control problem is decomposed into the local problems in these subdomains. The integral mean method is utilized for the diffusion term to present an explicit flux calculation on the inter-domain boundary in order to communicate the local problems on the interfaces between subdomains. The convection term is discretized along the characteristic direction. We establish the fully parallel and discrete schemes for solving these local problems. A priori error estimates in \(L^2\)-norm are derived for the state, co-state and control variables. Finally, we present numerical experiments to show the validity of the schemes and verify the derived theoretical results.  相似文献   

8.
In this paper, we consider the finite element approximation of an elliptic optimal control problem. Based on an assumption on the adjoint state of the continuous problem with a small parameter, which represents a regularization of the bang–bang type control problem, we derive robust a priori error estimates for optimal control and state and a posteriori error estimate is also presented. Numerical experiments confirm our theoretical results.  相似文献   

9.
In this paper we present a stability analysis of a stochastic optimization problem with stochastic second order dominance constraints. We consider a perturbation of the underlying probability measure in the space of regular measures equipped with pseudometric discrepancy distance (Römisch in Stochastic Programming. Elsevier, Amsterdam, pp 483–554, 2003). By exploiting a result on error bounds in semi-infinite programming due to Gugat (Math Program Ser B 88:255–275, 2000), we show under the Slater constraint qualification that the optimal value function is Lipschitz continuous and the optimal solution set mapping is upper semicontinuous with respect to the perturbation of the probability measure. In particular, we consider the case when the probability measure is approximated by an empirical probability measure and show an exponential rate of convergence of the sequence of optimal solutions obtained from solving the approximation problem. The analysis is extended to the stationary points.  相似文献   

10.
In the present paper, we have considered three methods with which to control the error in the homotopy analysis of elliptic differential equations and related boundary value problems, namely, control of residual errors, minimization of error functionals, and optimal homotopy selection through appropriate choice of auxiliary function H(x). After outlining the methods in general, we consider three applications. First, we apply the method of minimized residual error in order to determine optimal values of the convergence control parameter to obtain solutions exhibiting central symmetry for the Yamabe equation in three or more spatial dimensions. Secondly, we apply the method of minimizing error functionals in order to obtain optimal values of the convergnce control parameter for the homotopy analysis solutions to the Brinkman?CForchheimer equation. Finally, we carefully selected the auxiliary function H(x) in order to obtain an optimal homotopy solution for Liouville??s equation.  相似文献   

11.
In this paper, we study a Dirichlet optimal control problem associated with a linear elliptic equation the coefficients of which we take as controls in the class of integrable functions. The coefficients may degenerate and, therefore, the problems may exhibit the so-called Lavrentieff phenomenon and non-uniqueness of weak solutions. We consider the solvability of this problem in the class of W-variational solutions. Using a concept of variational convergence of constrained minimization problems in variable spaces, we prove the existence of W-solutions to the optimal control problem and provide the way for their approximation. We emphasize that control problems of this type are important in material and topology optimization as well as in damage or life-cycle optimization.  相似文献   

12.
In this article, we study a finite element approximation for a model free boundary plasma problem. Using a mixed approach (which resembles an optimal control problem with control constraints), we formulate a weak formulation and study the existence and uniqueness of a solution to the continuous model problem. Using the same setting, we formulate and analyze the discrete problem. We derive optimal order energy norm a priori error estimates proving the convergence of the method. Further, we derive a reliable and efficient a posteriori error estimator for the adaptive mesh refinement algorithm. Finally, we illustrate the theoretical results by some numerical examples.  相似文献   

13.
In this paper we demonstrate how to develop analytic closed form solutions to optimal multiple stopping time problems arising in the setting in which the value function acts on a compound process that is modified by the actions taken at the stopping times. This class of problem is particularly relevant in insurance and risk management settings and we demonstrate this on an important application domain based on insurance strategies in Operational Risk management for financial institutions. In this area of risk management the most prevalent class of loss process models is the Loss Distribution Approach (LDA) framework which involves modelling annual losses via a compound process. Given an LDA model framework, we consider Operational Risk insurance products that mitigate the risk for such loss processes and may reduce capital requirements. In particular, we consider insurance products that grant the policy holder the right to insure k of its annual Operational losses in a horizon of T years. We consider two insurance product structures and two general model settings, the first are families of relevant LDA loss models that we can obtain closed form optimal stopping rules for under each generic insurance mitigation structure and then secondly classes of LDA models for which we can develop closed form approximations of the optimal stopping rules. In particular, for losses following a compound Poisson process with jump size given by an Inverse-Gaussian distribution and two generic types of insurance mitigation, we are able to derive analytic expressions for the loss process modified by the insurance application, as well as closed form solutions for the optimal multiple stopping rules in discrete time (annually). When the combination of insurance mitigation and jump size distribution does not lead to tractable stopping rules we develop a principled class of closed form approximations to the optimal decision rule. These approximations are developed based on a class of orthogonal Askey polynomial series basis expansion representations of the annual loss compound process distribution and functions of this annual loss.  相似文献   

14.
We consider the Bolza problem associated with boundary/point control systems governed by strongly continuous semigroups. In continuation of our work in Lasiecka and Tuffaha [I. Lasiecka and A. Tuffaha, Riccati equations for the Bolza problem arising in boundary/point control problems governed by C 0–semigroups satisfying a singular estimate, J. Optim. Theory Appl. 136 (2008), pp. 229–246; I. Lasiecka and A. Tuffaha, A Bolza optimal synthesis problem for singular estimate control systems, Control Cybernet 38(4B) (2009), pp. 1429–1460], we yet extend the theory to a more general class of control problems that are not analytic providing sharp blow-up rates for the regularity. Solvability of the associated Riccati equations and an optimal feedback synthesis are established. The presence of unbounded control actions, such as boundary/point controls, naturally lead to a singularity at the terminal point t?=?T of the optimal control and of the corresponding feedback operator as before. The class of control systems considered in this article is a generalization to the class usually referred to in the literature as ‘Singular Estimate Control Systems’. The prototype is still that of a PDE system consisting of coupled hyperbolic parabolic dynamics interacting on an interface with point/boundary control. The distinct feature of the class considered in this article is that the degree of unboundedness in the control is stronger than that allowed in the usual singular estimate control system configuration, giving rise to less regular optimal state trajectories.  相似文献   

15.
We consider a problem of optimal production control of a single unreliable machine. The objective is to minimize a discounted convex inventory/backlog cost over an infinite horizon. Using the variational analysis methodology, we develop the necessary conditions of optimality in terms of the co-state dynamics. We show that an inventory-threshold control policy is optimal when the work and repair times are exponentially distributed, and demonstrate how to find the value of the threshold in this case. We consider also a class of distributions concentrated on finite intervals and prove properties of the optimal trajectories, as well as properties of an optimal inventory threshold that is time dependent in this case.  相似文献   

16.
In a companion paper (Part 1, J. Optim. Theory Appl. 137(3), [2008]), we determined the optimal starting conditions for the rendezvous maneuver using an optimal control approach. In this paper, we study the same problem with a mathematical programming approach. Specifically, we consider the relative motion between a target spacecraft in a circular orbit and a chaser spacecraft moving in its proximity as described by the Clohessy-Wiltshire equations. We consider the class of multiple-subarc trajectories characterized by constant thrust controls in each subarc. Under these conditions, the Clohessy-Wiltshire equations can be integrated in closed form and in turn this leads to optimization processes of the mathematical programming type. Within the above framework, we study the rendezvous problem under the assumption that the initial separation coordinates and initial separation velocities are free except for the requirement that the initial chaser-to-target distance is given. In particular, we consider the rendezvous between the Space Shuttle (chaser) and the International Space Station (target). Once a given initial distance SS-to-ISS is preselected, the present work supplies not only the best initial conditions for the rendezvous trajectory, but simultaneously the corresponding final conditions for the ascent trajectory.  相似文献   

17.
We consider a Markovian queueing system with N heterogeneous service facilities, each of which has multiple servers available, linear holding costs, a fixed value of service and a first-come-first-serve queue discipline. Customers arriving in the system can be either rejected or sent to one of the N facilities. Two different types of control policies are considered, which we refer to as ‘selfishly optimal’ and ‘socially optimal’. We prove the equivalence of two different Markov Decision Process formulations, and then show that classical M/M/1 queue results from the early literature on behavioural queueing theory can be generalized to multiple dimensions in an elegant way. In particular, the state space of the continuous-time Markov process induced by a socially optimal policy is contained within that of the selfishly optimal policy. We also show that this result holds when customers are divided into an arbitrary number of heterogeneous classes, provided that the service rates remain non-discriminatory.  相似文献   

18.
We study the numerical integration of functions depending on an infinite number of variables. We provide lower error bounds for general deterministic algorithms and provide matching upper error bounds with the help of suitable multilevel algorithms and changing-dimension algorithms. More precisely, the spaces of integrands we consider are weighted, reproducing kernel Hilbert spaces with norms induced by an underlying anchored function space decomposition. Here the weights model the relative importance of different groups of variables. The error criterion used is the deterministic worst-case error. We study two cost models for function evaluations that depend on the number of active variables of the chosen sample points, and we study two classes of weights, namely product and order-dependent weights and the newly introduced finite projective dimension weights. We show for these classes of weights that multilevel algorithms achieve the optimal rate of convergence in the first cost model while changing-dimension algorithms achieve the optimal convergence rate in the second model. As an illustrative example, we discuss the anchored Sobolev space with smoothness parameter \(\alpha \) and provide new optimal quasi-Monte Carlo multilevel algorithms and quasi-Monte Carlo changing-dimension algorithms based on higher-order polynomial lattice rules.  相似文献   

19.
In this paper, we investigate a posteriori error estimates of amixed finite elementmethod for elliptic optimal control problems with an integral constraint. The gradient for ourmethod belongs to the square integrable space instead of the classical H(div; Ω) space. The state and co-state are approximated by the P 0 2 -P1 (velocity–pressure) pair and the control variable is approximated by piecewise constant functions. Using duality argument method and energy method, we derive the residual a posteriori error estimates for all variables.  相似文献   

20.
We consider a boundary optimal control problem for the acoustic wave equation with a final value cost criterion. A time-domain decomposition procedure for the corresponding optimality system is introduced, which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. The process is inherently parallel and is suitable for real-time control applications. Convergence of the local solutions and controls to the global ones was established in an earlier publication. In this paper, a posteriori error estimates of the difference between the local solutions and the global one are obtained in terms of the mismatch of the n th iterates, or of successive iterates, across the time-domain break points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号