首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yan-Mei Lu 《中国物理 B》2022,31(6):60502-060502
The exploration of the memristor model in the discrete domain is a fascinating hotspot. The electromagnetic induction on neurons has also begun to be simulated by some discrete memristors. However, most of the current investigations are based on the integer-order discrete memristor, and there are relatively few studies on the form of fractional order. In this paper, a new fractional-order discrete memristor model with prominent nonlinearity is constructed based on the Caputo fractional-order difference operator. Furthermore, the dynamical behaviors of the Rulkov neuron under electromagnetic radiation are simulated by introducing the proposed discrete memristor. The integer-order and fractional-order peculiarities of the system are analyzed through the bifurcation graph, the Lyapunov exponential spectrum, and the iterative graph. The results demonstrate that the fractional-order system has more abundant dynamics than the integer one, such as hyper-chaos, multi-stable and transient chaos. In addition, the complexity of the system in the fractional form is evaluated by the means of the spectral entropy complexity algorithm and consequences show that it is affected by the order of the fractional system. The feature of fractional difference lays the foundation for further research and application of the discrete memristor and the neuron map in the future.  相似文献   

2.
《Physics letters. A》2019,383(19):2267-2271
The identification between chaos and ordered states in fractional-order chaotic systems is a challenge as well as a hot topic due to the complex of fractional calculus. In this paper, the smaller alignment index (SALI) is developed to detect chaos in the fractional-order chaotic systems by introducing the fractional-order tangent systems. Numerical simulations are carried out based on the fractional-order simplified Lorenz system and the fractional-order Hénon map, which are continuous chaotic system and discrete chaotic system, respectively. It shows that the proposed method is effective for distinguishing chaos and order in different kinds of fractional-order chaotic systems.  相似文献   

3.
张路  邓科  罗懋康 《中国物理 B》2012,21(9):90505-090505
We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional-order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method.  相似文献   

4.
This paper studies the dynamics of a new fractional-order discrete system based on the Caputo-like difference operator.This is the first study to explore a three-dimensional fractional-order discrete chaotic system without equilibrium. Through phase portrait, bifurcation diagrams, and largest Lyapunov exponents, it is shown that the proposed fractional-order discrete system exhibits a range of different dynamical behaviors. Also, different tests are used to confirm the existence of chaos,such as 0–1 test and C0 complexity. In addition, the quantification of the level of chaos in the new fractional-order discrete system is measured by the approximate entropy technique. Furthermore, based on the fractional linearization method, a one-dimensional controller to stabilize the new system is proposed. Numerical results are presented to validate the findings of the paper.  相似文献   

5.
Wu-Yang Zhu 《中国物理 B》2022,31(6):60204-060204
The memristor is also a basic electronic component, just like resistors, capacitors and inductors. It is a nonlinear device with memory characteristics. In 2008, with HP's announcement of the discovery of the TiO2 memristor, the new memristor system, memory capacitor (memcapacitor) and memory inductor (meminductor) were derived. Fractional-order calculus has the characteristics of non-locality, weak singularity and long term memory which traditional integer-order calculus does not have, and can accurately portray or model real-world problems better than the classic integer-order calculus. In recent years, researchers have extended the modeling method of memristor by fractional calculus, and proposed the fractional-order memristor, but its concept is not unified. This paper reviews the existing memristive elements, including integer-order memristor systems and fractional-order memristor systems. We analyze their similarities and differences, give the derivation process, circuit schematic diagrams, and an outlook on the development direction of fractional-order memristive elements.  相似文献   

6.
Qiankun Sun 《中国物理 B》2022,31(12):120501-120501
Discrete memristor has become a hotspot since it was proposed recently. However, the design of chaotic maps based on discrete memristor is in its early research stage. In this paper, a memristive seed chaotic map is proposed by combining a quadratic discrete memristor with the sine function. Furthermore, by applying the chaotification method, we obtain a high-dimensional chaotic map. Numerical analysis shows that it can generate hyperchaos. With the increase of cascade times, the generated map has more positive Lyapunov exponents and larger hyperchaotic range. The National Institute of Standards and Technology (NIST) test results show that the chaotic pseudo-random sequence generated by cascading two seed maps has good unpredictability, and it indicates the potential in practical application.  相似文献   

7.
Zong-Li Yang 《中国物理 B》2021,30(12):120515-120515
This paper proposes a fractional-order simplest chaotic system using a bi-stable locally-active memristor. The characteristics of the memristor and transient transition behaviors of the proposed system are analyzed, and this circuit is implemented digitally using ARM-based MCU. Firstly, the mathematical model of the memristor is designed, which is nonvolatile, locally-active and bi-stable. Secondly, the asymptotical stability of the fractional-order memristive chaotic system is investigated and some sufficient conditions of the stability are obtained. Thirdly, complex dynamics of the novel system are analyzed using phase diagram, Lyapunov exponential spectrum, bifurcation diagram, basin of attractor, and coexisting bifurcation, coexisting attractors are observed. All of these results indicate that this simple system contains the abundant dynamic characteristics. Moreover, transient transition behaviors of the system are analyzed, and it is found that the behaviors of transient chaotic and transient period transition alternately occur. Finally, the hardware implementation of the fractional-order bi-stable locally-active memristive chaotic system using ARM-based STM32F750 is carried out to verify the numerical simulation results.  相似文献   

8.
We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method.  相似文献   

9.
<正>In order to figure out the dynamical behaviour of a fractional-order chaotic system and its relation to an integerorder chaotic system,in this paper we investigate the synchronization between a class of fractional-order chaotic systems and integer-order chaotic systems via sliding mode control method.Stability analysis is performed for the proposed method based on stability theorems in the fractional calculus.Moreover,three typical examples are carried out to show that the synchronization between fractional-order chaotic systems and integer-orders chaotic systems can be achieved. Our theoretical findings are supported by numerical simulation results.Finally,results from numerical computations and theoretical analysis are demonstrated to be a perfect bridge between fractional-order chaotic systems and integer-order chaotic systems.  相似文献   

10.
一个分数阶忆阻器模型及其简单串联电路的特性   总被引:2,自引:0,他引:2       下载免费PDF全文
俞亚娟  王在华 《物理学报》2015,64(23):238401-238401
忆阻器是具有时间记忆特性的非线性电阻. 经典HP TiO2忆阻器模型的忆阻值为此前通过忆阻器电流的时间积分, 即记忆没有损失. 而最近研究证实HP TiO2 线性忆阻器掺杂层厚度不能等于零或者器件整体厚度, 导致器件的记忆有损失. 基于此发现, 本文首先提出了一个阶数介于0 与1间的分数阶HP TiO2 线性忆阻器模型, 研究了当受到周期外激励时, 分数阶导数的阶数对其忆阻值动态范围和输出电压动态幅值的影响规律, 推导出了磁滞旁瓣面积的计算公式. 结果表明, 分数阶导数阶数对磁滞回线的形状及所围成区域面积有重要影响. 特别地, 在外激频率大于1时, 分数阶忆阻器的记忆强度达到最大. 然后讨论了此分数阶忆阻器与电容或电感串联组成的单口网络的伏安特性. 结果表明, 在周期激励驱动时, 随着分数阶导数阶数的变化, 此分数阶忆阻器与电容的串联电路呈现出纯电容电路与忆阻电路的转换, 而它与电感的串联电路则呈现出纯电感电路与忆阻电路的转换.  相似文献   

11.
In this paper the synchronization of fractional-order chaotic systems is studied and a new single state fractional-order chaotic controller for chaos synchronization is presented based on the Lyapunov stability theory. The proposed synchronized method can apply to an arbitrary three-dimensional fractional chaotic system whether the system is incommensurate or commensurate. This approach is universal, simple and theoretically rigorous. Numerical simulations of several fractional-order chaotic systems demonstrate the universality and the effectiveness of the proposed method.  相似文献   

12.
Zhi-Jun Li 《中国物理 B》2023,32(1):10503-010503
Considering the fact that memristors have the characteristics similar to biological synapses, a fractional-order multistable memristor is proposed in this paper. It is verified that the fractional-order memristor has multiple local active regions and multiple stable hysteresis loops, and the influence of fractional-order on its nonvolatility is also revealed. Then by considering the fractional-order memristor as an autapse of Hindmarsh-Rose (HR) neuron model, a fractional-order memristive neuron model is developed. The effects of the initial value, external excitation current, coupling strength and fractional-order on the firing behavior are discussed by time series, phase diagram, Lyapunov exponent and inter spike interval (ISI) bifurcation diagram. Three coexisting firing patterns, including irregular asymptotically periodic (A-periodic) bursting, A-periodic bursting and chaotic bursting, dependent on the memristor initial values, are observed. It is also revealed that the fractional-order can not only induce the transition of firing patterns, but also change the firing frequency of the neuron. Finally, a neuron circuit with variable fractional-order is designed to verify the numerical simulations.  相似文献   

13.
贾雅琼  蒋国平 《物理学报》2017,66(16):160501-160501
研究分数阶时滞混沌系统同步问题,基于状态观测器方法和分数阶系统稳定性理论,设计分数阶时滞混沌系统同步控制器,使得分数阶时滞混沌系统达到同步,同时给出了数学证明过程.该同步控制器采用驱动系统和响应系统的输出变量进行设计,无需驱动系统和响应系统的状态变量,简化了控制器的设计,提高了控制器的实用性.利用Lyapunov稳定性理论和分数阶线性矩阵不等式,研究并给出了同步控制器参数的选择条件.以分数阶时滞Chen混沌系统为例,设计基于状态观测器的同步控制器,实现了分数阶时滞Chen混沌系统同步,并将其应用于保密通信系统中.仿真结果证明了该同步方法的有效性.  相似文献   

14.
In this paper, we investigate the mathematical models of discrete memristors based on Caputo fractional difference and G–L fractional difference. Specifically, the integer-order discrete memristor is a special model of those two cases. The “”-type hysteresis loop curves are observed when input is the bipolar periodic signal. Meanwhile, numerical analysis results show that the area of hysteresis decreases with the increase of frequency of input signal and the decrease of derivative order. Moreover, the memory effect, characteristics and physical realization of the discrete memristors are discussed, and a discrete memristor with short memory effects is designed. Furthermore, discrete memristive systems are designed by introducing the fractional-order discrete memristor and integer-order discrete memristor to the Sine map. Chaos is found in the systems, and complexity of the systems is controlled by the parameter of the memristor. Finally, FPGA digital circuit implementation is carried out for the integer-order and fractional-order discrete memristor and discrete memristive systems, which shows the potential application value of the discrete memristor in the engineering application field.  相似文献   

15.
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.  相似文献   

16.
基于自适应模糊控制的分数阶混沌系统同步   总被引:1,自引:0,他引:1       下载免费PDF全文
陈晔  李生刚  刘恒 《物理学报》2016,65(17):170501-170501
本文主要研究了带有未知外界扰动的分数阶混沌系统的同步问题.基于分数阶Lyapunov稳定性理论,构造了分数阶的参数自适应规则以及模糊自适应同步控制器.在稳定性分析中主要使用了平方Lyapunov函数.该控制方法可以实现两分数阶混沌系统的同步,使得同步误差渐近趋于0.最后,数值仿真结果验证了本文方法的有效性.  相似文献   

17.
This paper presents a new compound synchronisation scheme among four hyperchaotic memristor system with incommensurate fractional-order derivatives. First a new controller was designed based on adaptive technique to minimise the errors and guarantee compound synchronisation of four fractional-order memristor chaotic systems. According to the suitability of compound synchronisation as a reliable solution for secure communication, we then examined the application of the proposed adaptive compound synchronisation scheme in the presence of noise for secure communication. In addition, the unpredictability and complexity of the drive systems enhance the security of secure communication. The corresponding theoretical analysis and results of simulation validated the effectiveness of the proposed synchronisation scheme using MATLAB.  相似文献   

18.
A double image encryption method is proposed by utilizing discrete multiple-parameter fractional Fourier transform and chaotic maps. One of the two original images scrambled by one chaotic map is encoded into the amplitude of a complex signal with the other original image as its phase. The complex signal multiplied by another chaotic random phase mask is then encrypted by discrete multiple-parameter fractional Fourier transform. The parameters in chaotic map and discrete multiple-parameter fractional Fourier transform serve as the keys of this encryption scheme. Numerical simulations have been done to demonstrate the performance of this algorithm.  相似文献   

19.
Fang Yuan 《中国物理 B》2021,30(12):120514-120514
Continuous-time memristor (CM) has been widely used to generate chaotic oscillations. However, discrete memristor (DM) has not been received adequate attention. Motivated by the cascade structure in electronic circuits, this paper introduces a method to cascade discrete memristive maps for generating chaos and hyperchaos. For a discrete-memristor seed map, it can be self-cascaded many times to get more parameters and complex structures, but with larger chaotic areas and Lyapunov exponents. Comparisons of dynamic characteristics between the seed map and cascading maps are explored. Meanwhile, numerical simulation results are verified by the hardware implementation.  相似文献   

20.
张若洵  杨世平 《中国物理 B》2009,18(8):3295-3302
The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号