首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hou S  Zhu J  Ding M  Lv G 《Talanta》2008,76(4):798-802
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for simultaneous determination of three representative phytohormones in plant samples: gibberellic acid (GA3), indole-3-acetic acid (IAA) and abscisic acid (ABA). A solid-phase extraction (SPE) pretreatment method was used to concentrate and purify the three phytohormones of different groups from plant samples. The separation was carried out on a C18 reversed-phase column, using methanol/water containing 0.2% formic acid (50:50, v/v) as the isocratic mobile phase at the flow-rate of 1.0 mL min−1, and the three phytohormones were eluted within 7 min. A linear ion trap mass spectrometer equipped with electrospray ionization source was operated in negative ion mode. Selective reaction monitoring (SRM) was employed for quantitative measurement. The SRM transitions monitored were as 345 → 239, 301 for GA3, 174 → 130 for IAA and 263 → 153, 219 for ABA. Good linearities were found within the ranges of 5–200 μg mL−1 for IAA and 0.005–10 μg mL−1 for ABA and GA3. Their detection limits based on a signal-to-noise ratio of three were 0.005 μg mL−1, 2.2 μg mL−1 and 0.003 μg mL−1 for GA3, IAA and ABA, respectively. Good recoveries from 95.5% to 102.4% for the three phytohormones were obtained. The results demonstrated that the SPE-LC–MS/MS method developed is highly effective for analyzing trace amounts of the three phytohormones in plant samples.  相似文献   

2.
A synthetic method is described to produce a proton conductive polymer membrane with a polynorbornane backbone and inorganic–organic cyclic phosphazene pendent groups that bear sulfonic acid units. This hybrid polymer combines the inherent hydrophobicity and flexibility of the organic polymer with the tuning advantages of the cyclic phosphazene to produce a membrane with high proton conductivity and low methanol crossover at room temperature. The ion exchange capacity (IEC), the water swelling behavior of the polymer, and the effect of gamma radiation crosslinking were studied, together with the proton conductivity and methanol permeability of these materials. A typical membrane had an IEC of 0.329 mmol g−1 and had water swelling of 50 wt%. The maximum proton conductivity of 1.13 × 10−4 S cm−1 at room temperature is less than values reported for some commercially available materials such as Nafion. However the average methanol permeability was around 10−9 cm s−1, which is one hundred times smaller than the value for Nafion. Thus, the new polymers are candidates for low-temperature direct methanol fuel cell membranes.  相似文献   

3.
Enthalpies for the two proton ionizations of the biochemical buffers N-tris(hydroxymethyl)methyl-4-aminobutanesulfonic acid (TABS), N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid (TAPS) and 3-[N-tris(hydroxymethyl)methylamino]-2-hyroxypropane sulfonic acid (TAPSO) were obtained in water–methanol mixtures with methanol mole fraction (Xm) from 0 to 0.360. The ionization enthalpy for the first proton (ΔH1) of all three buffers was small and exhibited slight changes upon methanol addition. The ionization enthalpy of the second proton (ΔH2) of TABS increased from 39.6 to 49.8 kJ mol−1 and for TAPS from 40.1 to 43.2 kJ mol−1, with a minimum of 38.2 kJ mol−1 at Xm = 0.059. For TAPSO the increase was from 33.1 to 35.6 kJ mol−1 at Xm = 0.194, with measurements at higher Xm precluded by low solubility of TAPSO in methanol rich solvents. The solvent composition was selected so as to include the region of maximum structure enhancement of water by methanol. The results were interpreted in terms of solvent–solvent and solvent–solute interactions.  相似文献   

4.
Using a pressure cell equipped with an Ag AgCl 0.1 M KCl external pressure-balanced reference electrode (EPBRE), hydrogen, methanol, formic acid, carbon monoxide, ethanol, acetic acid, and glucose were electrochemically oxidized on a Pt electrode under hot aqueous conditions (365−525 K), and the polarization curves were obtained at a sweep rate of 1 or 10 mV s−1. The potential measured versus EPBRE was corrected to the RHE scale based on the experimentally or theoretically calculated pH of the solution at high temperature. During methanol and carbon monoxide oxidation, a strongly adsorbed intermediate presumably CO, was formed but it was oxidized at a lower potential than under ambient temperature. Formic acid was rapidly oxidized around 0 V versus RHE without formation of this adsorbed intermediate. Using a gas mixture of hydrogen and carbon monoxide, it was confirmed that the surface coverage by CO was decreased dramatically with a temperature increase from 425 to 475 K under hot aqueous conditions. Ethanol and acetic acid were also satisfactorily oxidized, but the trial to measure the electrochemical oxidation behavior of glucose was not successful due to the adhesion of char-like compounds to the electrode.  相似文献   

5.
Cluster models for sites on the {1 1 1} surface of Fe3O4 were used to study the strength of bonding of water-gas shift intermediates using density functional theory. Three site models were used, representing an unpromoted catalyst, a catalyst where copper cations substitute for iron cations below the surface and a catalyst where copper cations substitute in the surface. The strengths of bonding of oxygen, carbon dioxide, dissociated water and dissociated formic acid were all observed to decrease by less than 20 kJ mol−1 when copper substituted below the surface, but they decreased by 60–80 kJ mol−1 when copper substituted in the surface of the catalyst. A minimum energy structure for molecularly adsorbed water was not identified because all attempts to do so resulted in dissociation.  相似文献   

6.
A simple and sensitive high-performance liquid chromatographic method has been developed for determination of chlorogenic acid in rat plasma. Chlorogenic acid was extracted from plasma samples with methanol. HPLC analysis of the extracts was performed on a C18 column (250 mm × 4.6 mm i.d., 5 µm particles). The mobile phase was acetonitrile −1% formic acid (9:91, v/v). The calibration plot was linear over the range 0.0420–2.10 µg mL−1 and the lower limit of quantification was 0.0420 µg mL−1. The method was reproducible and reliable with intra-day precision better than 8.2%, inter-day precision better than 9.1%, accuracy within ±8.3%, and mean extraction recovery above 84.4%. The validated method was successfully applied to pharmacokinetic studies of chlorogenic acid in rat plasma after administration of Luying decoction.  相似文献   

7.
A novel sequential injection method for the determination of nitrite at nanomolar level in seawater samples has been developed. The pink azo compound was formed based on the Griess reaction and quantitatively adsorbed onto a Sep-Pak C18 cartridge. The enriched azo compound was rinsed with water and ethanol (28%, v/v) in turn, and then eluted with an eluent containing 26.6% (v/v) ethanol and 0.108 mol L−1 H2SO4. Finally the azo compound was measured using a spectrophotometer at 543 nm. Under the optimized conditions, the linear calibration ranges were 0.71–42.9 nmol L−1 for a 150-mL sample and 35.7–429 nmol L−1 for a 15-mL sample. The relative standard deviation of 8 measurements was 1.44% for 14.3 nmol L−1 nitrite. For the 150 mL sample, the detection limit was estimated to be 0.1 nmol L−1. The throughput of the method was about 4 samples per hour. The proposed method has been successfully applied to the in-field determination of nanomolar concentrations of nitrite in seawater.  相似文献   

8.
We reported sulfonated poly(ether ether ketone) (SPEEK, 61% degree of sulfonation)–metal oxides (MO2:SiO2, TiO2 and ZrO2)–polyaniline composite membranes. Metal oxides were incorporated into the swelled SPEEK membrane by sol–gel method and cured by thermal treatment. SPEEK–metal oxide membranes surfaces were modified with polyaniline (PANI) by a redox polymerization process. It was observed that water retention capacity of membrane was increased and methanol permeability was reduced due to synergetic effect of metal oxides and surface modification with polyaniline. These composite membranes showed extremely low methanol permeability (1.9–1.3 × 10−7 cm2 s−1), which was lower than till reported values either for SPEEK–metal oxide or SPEEK/PANI membranes. Relatively high selectivity parameter (SP) values at 343 K of these membranes, especially S–SiO2–PANI and S–TiO2–PANI, indicated their great advantages over Nafion117 (N117) membrane for targeting on moderate temperature applications due to the synergetic effect of MO2 and PANI in SPEEK matrix. S–TiO2–PANI and N117 showed comparable cell performance in direct methanol fuel cell (DMFC).  相似文献   

9.
The IR absorption band at 5250 cm–1 is used to determine 0–5% water in furfural. The accuracy of the determination is not less than 5%. The method is suitable for any kind of furfural. The analytical results are unaffected by the presence of formic, acetic, and pyromucic acids, and methanol and ethanol.  相似文献   

10.
A series of highly proton conductive electrolyte membranes with improved methanol barrier properties are prepared from polyallylamine hydrochloride (PAH) and polystyrene sulfonic acid (PSS) including salt by Layer-by-Layer (LbL) method. The effects of added salt type (NaCl, MgCl2) and salt concentration (1.0 M, 0.1 M) on proton conductivity (σ) and methanol barrier properties of the LbL self-assembled composite membranes are discussed in terms of controlled layer thickness and charge density. Furthermore, the influences of ion type in the multilayered composite membranes are studied in conjunction with physicochemical and thermal properties.The deposition of the self-assembly of PAH/PSS film on Nafion is followed by UV–Vis spectroscopy and it is observed that the polyelectrolyte layers growth on both sides of Nafion membrane regularly. (PAH/PSS)5–Na+ and (PAH/PSS)5–H+ with 1.0 M NaCl exhibits 49.6 and 27.8% reduction in lower methanol permittivity in comparison with the pristine Nafion®117, respectively, while the proton conductivities are 12.97 and 74.69 mS cm−1. Promisingly, it is found that the membrane selectivity values (Φ) of all multilayered membranes in H+ form are much higher than that of salt form (Na+ and Mg2+) and perfluorosulfonated ionomers reported in the literature. Also, we find out that the use of polyelectrolytes with high charge density causes a further improvement in proton conductivity and methanol barrier properties simultaneously. These encouraging results indicate that upon a suitable choice of LbL deposition conditions, composite membranes exhibiting both high proton conductivity and improved methanol barrier properties can be tailored for fuel cells.  相似文献   

11.
The mediated oxidation of N-acetyl cysteine (NAC) and glutathione (GL) at the palladized aluminum electrode modified by Prussian blue film (PB/Pd–Al) is described. The catalytic activity of PB/Pd–Al was explored in terms of FeIII[FeIII(CN)6]/FeIII[FeII(CN)6]1− system by taking advantage of the metallic palladium layer inserted between PB film and Al, as an electron-transfer bridge. The best mediated oxidation of NAC and GL on the PB/Pd–Al electrode was achieved in 0.5 M KNO3 + 0.2 M potassium acetate of pH 2. The mechanism and kinetics of the catalytic oxidation reactions of the both compounds were monitored by cyclic voltammetry and chronoamperometry. The charge transfer-rate limiting step as well as overall oxidation reaction of NAC or GL is found to be a one-electron abstraction. The values of transfer coefficients α, catalytic rate constant k and diffusion coefficient D are 0.5, 3.2 × 102 M−1 s−1 and 2.45 × 10−5 cm2 s−1 for NAC and 0.5, 2.1 × 102 M−1 s−1 and 3.7 × 10−5 cm2 s−1 for GL, respectively. The modifying layers on the Pd–Al substrate have reproducible behavior and a high level of stability in the electrolyte solutions. The modified electrode is exploited for hydrodynamic amperometry of NAC and GL. The amperometric calibration graph is linear in concentration ranges 2 × 10−6–40 × 10−6 for NAC and 5 × 10−7–18 × 10−6 M for GL and the detection limits are 5.4 × 10−7 and 4.6 × 10−7 M, respectively.  相似文献   

12.
The formation of strongly bonded carbonaceous species from simple fuels on platinum metal electrodes at open circuit at potentials in the hydrogen region is widely accepted. Attenuated total reflection (ATR)-IR spectroscopy was used in this work to investigate the adsorption of such particles. A platinum film sufficiently stable for such studies in acid solution could be obtained on a germanium reflection element with a 0.5 nm layer of chromium and a 5 nm layer of platinum. The adsorption of CO leads to a strong band at 2000 cm−1 assigned to linearly bonded CO, a broad band at 1800 cm−1 assigned to bridge-bonded and possibly multiple bonded CO and a weak band at 1430 cm. Clearly, the reaction of methanol, formaldehyde or formic acid produces the strong CO band.  相似文献   

13.
A direct ethanol fuel cell (DEFC) is developed with low catalyst loading at anode and cathode compared to that reported in the literature. Pt/Ru (40%:20% by wt.)/C and Pt-black were used as anode and cathode catalyst with loadings in the range of 0.5–1.2 mg/cm2. The temperatures of anode and cathode were varied from 34 °C to 110 °C, and the pressure was maintained at 1 bar. Although low catalyst loading was used, the cell performance is enhanced by 40–50% with the use of low concentration of sulfuric acid in ethanol and Ni-mesh as current collector at the anode. The power density 15 mW/cm2 at 32 mA/cm2 of current density is obtained from the single cell with 0.5 mg/cm2 loading of Pt–Ru/C at anode (90 °C) and Pt-black at cathode (110 °C). The performance of DEFC increases with the increase in ethanol and sulfuric acid concentrations, electrocatalyst loadings up to 1 mg cm−2 at anode and cathode. However, the performance of DEFC decreases with further increase in electrocatalyst loading.  相似文献   

14.
Heretofore, a scientific and systemic method for differentiation and quality estimation of a well-known Chinese traditional medicine, ‘Cordyceps’, has not been established in modern market. In this paper, Fourier-transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2D-IR) are employed to propose a method for analysis of Cordyceps. It has presented that IR spectra of real Cordyceps of different origins and counterfeits have their own macroscopic fingerprints, with discriminated shapes, positions and intensities. Their secondary derivative spectra can amplify the differences and confirm the potentially characteristic IR absorption bands 1400–1700 cm−1 to be investigated in 2D-IR. Many characteristic fingerprints are discovered in 2D-IR spectra in the range of 1400–1700 cm−1 and hetero 2D spectra of 670–780 cm−1 × 1400–1700 cm−1. The different fingerprints display different chemical constitutes. Through the three steps, different Cordyceps and their counterfeits can be discriminated effectively and their qualities distinctly display. Successful analysis of eight Cordyceps capsule products has proved the practicability of the method, which can also be applied to the quality estimation of other Chinese traditional medicines.  相似文献   

15.
A simple, rapid, and sensitive method for the determination of traces of thirteen sulfonamide antibacterials in milk and eggs is presented. This method is based on the combination of polymer monolith microextraction (PMME) technique with hydrophilic interaction chromatography/mass spectrometry (HILIC/MS). The extraction was performed with a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column while the subsequent separation was carried out on a Luna NH2 column by HILIC. To obtain optimum results, several parameters relating to HILIC and PMME were investigated. After optimization, acetonitrile (contain 0.05% formic acid, v/v) was used as the elution solution, which was well compatible with the mobile phase in HILIC. Good linearities were obtained for thirteen SAs with the correlation coefficients (R2) above 0.997. The limits of detection (S/N = 3) of the method were found to be 0.4–5.7 ng mL−1 of SAs in whole milk and 0.9–9.8 ng g−1 of SAs in eggs. The recoveries of thirteen SAs in two matrices ranged from 80.4 to 119.8%, with relative standard deviations less than 11.8%.  相似文献   

16.
Wang X  Zhao X  Liu X  Li Y  Fu L  Hu J  Huang C 《Analytica chimica acta》2008,620(1-2):162-169
In this study, a new method was developed for analyzing malathion, cypermethrin and lambda-cyhalothrin from soil samples by using homogeneous liquid–liquid extraction (HLLE) and gas chromatography with electron capture detector (GC–ECD). Acetone was used as extraction solvent for the extraction of target pesticides from soil samples. When the extraction process was finished, the target analytes in the extraction solvent were rapidly transferred from the acetone extract to carbon tetrachloride, using HLLE. Under the optimum conditions, linearity was obtained in the range of 0.05–40 μg kg−1 for malathion, 0.04–10 μg kg−1 for lambda-cyhalothrin and 0.05–50 μg kg−1 for cypermethrin, respectively. Coefficients of correlation (r2) ranged from 0.9993 to 0.9998. The repeatability was carried out by spiking soil samples at concentration levels of 2.5 μg kg−1 for lambda-cyhalothrin, and 10 μg kg−1 for malathion and cypermethrin, respectively. The relative standard deviations (RSDs) varied between 2.3 and 9.6% (n = 3). The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, varied between 0.01 and 0.04 μg kg−1. The relative recoveries of three pesticides from soil A1, A2 and A3 at spiking levels of 2.5, 5 and 10 μg kg−1 were in the range of 82.20–91.60%, 88.90–110.5% and 77.10–98.50%, respectively. In conclusion, the proposed method can be successfully applied for the determination of target pesticide residues in real soil samples.  相似文献   

17.
This paper reports proton and methanol transport behavior of composite membranes prepared for use in the direct methanol fuel cell (DMFC). The composite membranes were prepared by embedding various proportions (10–30 wt.%) of inorganic proton conducting material (tungstophosphoric acid (TPA)/MCM-41) into sulfonated poly(ether ether ketone) (SPEEK) polymer matrix. The results indicate that the proton conductivity of the membranes increases with increasing loading of solid proton conducting material. The highest conductivity value of 2.75 mS/cm was obtained for the SPEEK composite membrane containing 30 wt.% solid proton conducting material (50 wt.% TPA in MCM-41). The methanol permeability and crossover flux were also found to increase with increasing loading of the solid proton conducting material. Lowest permeability value of 5.7 × 10−9 cm2 s−1 was obtained for composite membrane with 10 wt.% of the solid proton conducting material (40 wt.% TPA in MCM-41). However, all the composite membranes showed higher selectivity (ratio between the proton conductivity and the methanol permeability) compared to the pure SPEEK membrane. In addition, the membranes are thermally stable up to 160 °C. Thus, these membranes have potential to be considered for use in direct methanol fuel cell.  相似文献   

18.
Polyaniline was deposited potentiodynamically on a stainless steel substrate in the presence of an inorganic acids (sulfuric acid). The electrochemical characterization of the electrode was carried out by means of cyclic voltammetry and electrochemical impedance spectroscopy in the organic acids (p-toluene sulfonic acid) solution. The results show that polyaniline has a high specific capacitance of 431.8 F g−1 at 1 mV s−1, high coulombic efficiency of 95.6% at 20 mV s−1, and exhibits a high reversibility. This indicates the promising feasibility of the polyaniline used as an electrochemical capacitor material in the electrolyte of p-toluene sulfonic acid solution especially at high charge–discharge process.  相似文献   

19.
The characteristics, performance, and application of an electrode, namely, Pt|Hg|Hg2(IBP)2|Graphite, where IBP stands for ibuprofenate ion, are described. This electrode responds to IBP with sensitivity of (58.6 ± 0.9) mV decade 1 over the range 5.0 × 10 5–1.0 × 10 1 mol L 1 at pH 6.0–9.0 and a detection limit of 3.8 × 10 5 mol L 1. The electrode is easily constructed at a relatively low cost with fast response time (within 15–30 s) and can be used for a period of 5 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for ibuprofen in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used for the direct assay of ibuprofen in commercial tablets by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedure.  相似文献   

20.
Although PtRu alloy nanocatalysts have been certified to possess excellent electrocatalytic performance and CO-poisoning tolerance toward formic acid and methanol electro-oxidation, the unaffordable usages of ruthenium (Ru) and platinum (Pt) have greatly limited their widespread adoption. Here, a facile one-pot method is reported for implanting atomic dispersed Ru in PtNi colloidal nanocrystal clusters with different Ru/Pt/Ni molar ratios, greatly reducing the dosages of Pt and Ru, and further improving the catalytic performances for the electro-oxidation of formic acid and methanol. Through simple control of the amount of Ni(acac)2 precursor, trimetallic Ru0.3Pt70.5Ni29.2, Ru0.6Pt55.9Ni43.5, Ru0.2Pt77.3Ni22.5, and Ru0.9Pt27.3Ni71.8 colloidal nanocrystal clusters (CNCs) are obtained. In particular, the Ru0.3Pt70.5Ni29.2 CNCs exhibit excellent specific activities for formic acid and methanol electro-oxidation, that is, 14.2 and 15.3 times higher, respectively, than those of the Pt/C catalyst. Moreover, the Ru0.3Pt70.5Ni29.2 CNCs also possess better anti-CO-poisoning properties and diffusion ability than the other RuPtNi CNCs. The excellent formic acid and methanol electro-oxidation activities of RuPtNi CNCs are ascribed to the optimal ligand effects derived from the Pt, Ni, and atomic dispersed Ru atoms, which can improve the OH adsorption ability and further the anti-CO-poisoning capability. This research opens a new door for increasing the electro-oxidation properties of liquid fuels by using lower dosages of noble metals in Pt-based catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号