首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An interface crack of a finite length moving with a constant subsonic speed v along an interface of two semi-infinite piezoelectric spaces is considered. It is assumed that the bimaterial compound is loaded by a remote mixed mode mechanical loading and a thermoelectrical field and that a frictionless contact zone arises at the leading crack tip. Electrically permeable and electrically insulated cases of the open part of the crack are involved into the consideration. By introducing a moving coordinate system at the crack tip the problem is reduced to a combined Dirichlet–Riemann boundary value problem which is solved exactly. For both cases of the electrical conditions the transcendental equations are obtained for the determination of the real contact zone length, and moreover, the associated closed form asymptotic formulas are found for small values of this parameter. Variations of the contact zone length and the stress intensity factor with respect to the crack speed and the loading have been investigated both for electrically permeable and electrically insulated cases.  相似文献   

2.
An inplane problem for a crack moving with constant subsonic speed along the interface of two piezoelectric materials is considered. A mechanically frictionless and electrically permeable contact zone is assumed at the right crack tip whilst for the open part of the crack both electrically permeable and electrically insulated conditions are considered. In the first case a moving concentrated loading is prescribed at the crack faces and in the second case an additional electrical charge at the crack faces is prescribed as well. The main attention is devoted to electrically permeable crack faces. Introducing a moving coordinate system at the leading crack tip the corresponding inhomogeneous combined Dirichlet–Riemann problem is formulated and solved exactly for this case. All electromechanical characteristics at the interface are presented in a closed form for arbitrary contact zone lengths, and further, the transcendental equation for the determination of the real contact zone length is derived. As a particular case of the obtained solution a semi-infinite crack with a contact zone is considered. The numerical analysis performed for a certain piezoelectric bimaterial showed an essential increase of the contact zone length and the associated stress intensity factor especially for the near-critical speed region. Similar investigations have been performed for an electrically insulated crack and the same behavior of the above mentioned parameters is observed.  相似文献   

3.
An interface crack with an artificial contact zone at the right-hand side crack tip between two dissimilar finite-sized piezoelectric materials is considered under remote mixed-mode loading. To find the singular electromechanical field at the crack tip, an asymptotic solution is derived in connection with the conventional finite element method. For mechanical loads, the stress intensity factors at the singular points are obtained. As a particular case of this solution, the contact zone model (in Comninou’s sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are derived. The dependencies of the contact zone lengths on external load coefficients are illustrated in graphical form. For a particular case of a short crack with respect to the dimensions of the bimaterial compound, the numerical results are compared to the exact analytical solutions, obtained for a piezoelectric bimaterial plane with an interface crack.  相似文献   

4.
An electrically permeable interface crack with a frictionless contact zone at the right crack tip between two semi-infinite piezoelectric spaces under the action of a remote electromechanical loading and a temperature flux is considered. Assuming that all fields are independent on the coordinate x2 co-directed with the crack front, the stresses, the electrical and the temperature fluxes as well as the derivatives of the jumps of the displacements, the electrical potential and the temperature at the interface are presented via a set of analytic functions in the (x1,x3)-plane with a cut along the crack. Due to this representation firstly an auxiliary problem concerning the direction of the heat flux permitting a transition from a perfect thermal contact to a separation has been solved for a piezoelectric bimaterial. Besides, an inhomogeneous combined Dirichlet–Riemann boundary value problem has been formulated and solved exactly for the above mentioned interface crack. Stress and electrical displacements intensity factors are found in a clear analytical form which is especially easier for a small contact zone length. A simple equation and a closed form analytical formula for the determination of the real contact zone length have been derived and compared with the associated equation of the classical (oscillating) interface crack model defining the zone of crack faces interpenetration. For a numerical illustration of the obtained results a bimaterial cadmium selenium/glass has been used, and the influence of the heat flux upon the contact zone length and the associated stress intensity factor has been shown.  相似文献   

5.
An interface crack with a frictionless contact zone at the right crack tip between two semi-infinite piezoelectric/piezomagnetic spaces under the action of a remote mechanical loading, magnetic and electric fluxes as well as concentrated forces at the crack faces is considered. Assuming that all fields are independent on the coordinate x 2 co-directed with the crack front, the stresses, the electrical and the magnetic fluxes as well as the derivatives of the jumps of the displacements, the electrical and magnetic potentials are presented via a set of analytic functions in the (x 1, x 3)-plane with a cut along the crack region. Two cases of magneto-electric conditions at the crack faces are considered. The first case assumes that the crack is electrically and magnetically permeable, and in the second case the crack is assumed electrically permeable while the open part of the crack is magnetically impermeable. For both these cases due to the above-mentioned representation the combined Dirichlet–Riemann boundary value problems have been formulated and solved exactly. Stress, electric and magnetic induction intensity factors are found in a simple analytical form. Transcendental equations and a closed form analytical formula for the determination of the real contact zone length have been derived for both cases of magnetic conditions in the crack region. For a numerical illustration of the obtained results a bimaterial BaTiO3–CoFe2O4 with different volume fractions of BaTiO3 has been used, and the influence of the mechanical loading and the intensity of the magnetic flux upon the contact zone length and the associated intensity factors as well as the energy release rate has been shown.  相似文献   

6.
An interface crack of finite length is considered between two semi-infinite planes with an artificial contact zone at one of the two crack tips. A transcendental equation and certain simple asymptotic formulas are established for the real contact zone (in the Comninou-Dundurs sense) in terms of the stress intensity factors (SIFs) of the considered model. In these terms analytical expressions are also provided for the energy release rate and for the SIF of the classical interface crack model with an oscillating singularity at the crack tip. The appropriate length of the artifical contact zone is shown to be attainable on the basis of the analysis of the stresses at the crack tip. The use of the proposed model is suggested for integrity assessment of inhomogeneous structural elements of composites containing interface cracks. Received 26 March 1997; accepted for publication 12 September 1997  相似文献   

7.
A plane problem for a thermally insulated interface crack with a contact zone in an isotropic bimaterial under tension–shear mechanical loading and a temperature flux is considered. The expressions for the stresses and the electrical flux as well as for the derivatives of the displacement and the temperature jumps at the material interfaces via sectionally holomorphic mechanical and thermal potential functions are given. After the solution of the thermal problem the inhomogeneous combined Dirichlet–Riemann boundary value problem is formulated and solved exactly. The stresses at the interface and the stress intensity factors at the singular points are presented in a clear analytical form. Special attention is devoted to the case of a small contact zone when the stress intensity factors can be presented in form similar to the associated presentation for an “open” crack model. A transcendental equation and an asymptotic analytic formula for the determination of the real contact zone length are derived. It is shown that for a certain bimaterial this length as well as the correspondent stress intensity factor are defined by a single parameter which depends on the normal-shear loading and the heat flux.  相似文献   

8.
A plane strain problem for two piezoelectric half-spaces adhered by a very thin isotropic interlayer with a crack under the action of remote mixed mode mechanical loading and electrical flux is considered. The crack is situated either at an interface or in the interlayer. It is assumed that the substrates are much stiffer than the intermediate layer. Therefore, pre-fracture zones (plastic or damage) arise at the crack continuations. Normal and shear stresses are assumed to be constant in this zones and to satisfy some material equation, which can be taken from theory or derived experimentally. Modeling the pre-fracture zones by the crack continuations with unknown cohesive stresses on their faces reduces the problem to elastic interface crack analysis leading to a Hilbert problem. This problem is solved exactly. The pre-fracture zone lengths and stresses in these zones are found from algebraical and transcendental equations. The latter are derived from the conditions of stress finiteness at the ends of pre-fracture zones and the material equations. The electrical displacement at any point of the pre-fracture zones is found in closed form as well. Particular cases of symmetrical loading and of equivalent properties of the upper and lower bimaterial components are considered. Numerical results corresponding to certain material combinations and interlayer material equations are presented and analysed. In the suggested model, any singularities connected with the crack are eliminated, i.e., all mechanical and electrical characteristics are limited in the near-crack tip region.  相似文献   

9.
This paper constitutes the second part of a study of interface cracks with contact zones in thermopiezoelectrical bimaterials, and it is concerned with the case of an electrically impermeable interface crack. The principal physical peculiarity of this case in comparison with an impermeable interface crack is connected with the dependencies of the contact zone length and the fracture mechanical parameters on the prescribed electrical flux, and in a mathematical sense the main peculiarity is concerned with the reduction of the problem in question to the joint solution of inhomogeneous combined Dirichlet–Riemann and Hilbert boundary value problems. The exact analytical solutions of the mentioned problems have been found for an arbitrary contact zone length, and the required thermal, mechanical and electrical characteristics at the interface as well as the associated fracture mechanical parameters at the corresponding crack tips are presented. The transcendental equations for the determination of the real contact zone length have been obtained for a general case and for a small contact zone length in an especially simple form. Using the admissible directions of the heat and the electrical fluxes defined in this paper as well, the dependencies of the real contact zone length and the associated fracture and electrical intensity factors on the intensities of the thermal and electrical fluxes are presented in tables and associated diagrams.  相似文献   

10.
A plane problem for a tunnel electrically permeable interface crack between two semi-infinite piezoelectric spaces is studied. A remote mechanical and electrical loading is applied. Elastic displacements and potential jumps as well as stresses and electrical displacement along the interface are presented using a sectionally holomorphic vector function. It is assumed that the interface crack includes zones of crack opening and frictionless contact. The problem is reduced to a combined Dirichlet–Riemann boundary value problem which is solved analytically. From the obtained solution, simple analytical expressions are derived for all mechanical and electrical characteristics at the interface. A quite simple transcendental equation, which determines the point of separation of open and close sections of the crack, is found. For the analysis of the obtained results, the main attention is devoted to the case of compressive-shear loading. The analytical analysis and numerical results show that, even if the applied normal stress is compressive, a certain crack opening zone exists for all considered loading values provided the shear field is present. It is found that the shear stress intensity factor at the closed crack tip and the energy release rates at the both crack tips depend very slightly on the magnitude of compressive loading.  相似文献   

11.
Summary A boundary value problem for two semi-infinite anisotropic spaces with mixed boundary conditions at the interface is considered. Assuming that the displacements are independent of the coordinate x 3, stresses and derivatives of displacement jumps are expressed via a sectionally holomorphic vector function. By means of these relations the problem for an interface crack with an artificial contact zone in an orthotropic bimaterial is reduced to a combined Dirichlet-Riemann problem which is solved analytically. As a particular case of this solution, the contact zone model (in Comninou's sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are obtained. The classical interface crack model with oscillating singularities at the crack tips is derived from the obtained solution as well. Analytical relations between fracture mechanical parameters of different models are found, and recommendations concerning their implementation are given. The dependencies of the contact zone lengths on material properties and external load coefficients are illustrated in graphical form. The practical applicability of the obtained results is demonstrated by means of a FEM analysis of a finite-sized orthotropic bimaterial with an interface crack. Received 19 October 1998; accepted for publication 13 November 1998  相似文献   

12.
A plane problem for a crack moving with a subsonic speed along the interface of two piezoelectric semi-infinite spaces is considered. The crack is assumed to be free from mechanical loading. The limited permeable electric condition with an account of electric traction is adopted at its faces. A uniformly distributed mixed mode mechanical loading and an electric flux are prescribed at infinity. The problem is reduced to the Riemann–Hilbert problem by means of introducing a moving coordinate system and assuming that the electric flux is uniformly distributed along the crack region. An exact solution of this problem is proposed. It permits to find in closed form all necessary electromechanical characteristics at the interface and to formulate the equation for the determination of the electric flux. Analysis of this equation confirms the correctness of the assumption concerning the uniform distribution of the electric flux in the crack region. The values of the electric flux are determined by solving the obtained equation. Thereafter, the stress and electric intensity factors as well as their asymptotic fields at the crack tip are also found. The particular case of a crack moving in a homogeneous piezoelectric material is considered. The values of the electric flux and the fracture parameters are found exactly in a simple form for this case. Also, a numerical analysis is performed for a crack propagating with a subsonic speed between PZT4 and PZT5 materials and for a crack moving in PZT4 material. The electric flux in the crack region, stress and electric intensity factors, crack opening and the energy release rate (ERR) are found as functions of the crack speed, loading and electric permeability of the crack medium. The influence of the electric traction on the crack faces upon the mentioned parameters is demonstrated.  相似文献   

13.
Plane problem for an infinite space composed of two different piezoelectric or piezoelectric/dielectric semi-infinite spaces with a periodic set of limited electrically permeable interface cracks is considered. Uniformly distributed electromechanical loading is applied at infinity. The frictionless contact zones at the crack tips are taken into account. The problem is reduced to the combined Dirichlet–Riemann boundary value problem by means of the electromechanical factors presentation via sectionally analytic functions, assuming that the electric flux is uniformly distributed inside the cracks. An exact solution of the problem is proposed. It permits to find in a closed form all necessary electromechanical characteristics at the interface and to formulate the equation for the determination of the electric flux value. Analysis of this equation confirms the correctness of the assumption concerning the uniform distribution of the electric flux in the crack region.Formulae for stresses, electric displacement vector, elastic displacements and electric potential jump at the interface as well as the intensity factors at the crack tips are given. Equation for the contact zone length determination is presented. Calculations for certain material combinations are carried out. The influence of electric permeability of cracks on electromechanical fields and the fracture mechanical parameters is analyzed.  相似文献   

14.
纤维增强复合材料圆柱型界面裂纹分析   总被引:2,自引:1,他引:2  
王清  嵇醒  王远功 《力学学报》1997,29(4):421-428
以裂纹面上的位错函数为未知量将圆柱型界面裂纹问题化成一组奇异积分方程的求解问题.应用Muskhelishvili的奇异积分方程理论,分析了圆柱型界面裂纹尖端应力场.针对裂纹尖端分别存在和不存在接触区两种情况,确定了裂纹尖端应力场的奇异性.利用数值方法计算了圆柱型界面裂纹尖端接触区尺寸对剪应力强度因子的影响.  相似文献   

15.
A constant moving crack in a magnetoelectroelastic material under in-plane mechanical, electric and magnetic loading is studied for impermeable crack surface boundary conditions. Fourier transform is employed to reduce the mixed boundary value problem of the crack to dual integral equations, which are solved exactly. Steady-state asymptotic fields near the crack tip are obtained in closed form and the corresponding field intensity factors are expressed explicitly. The crack speed influences the singular field distribution around the crack tip and the effects of electric and magnetic loading on the crack tip fields are discussed. The crack kinking phenomena is investigated using the maximum hoop stress intensity factor criterion. The magnitude of the maximum hoop stress intensity factor tends to increase as the crack speed increases.  相似文献   

16.
Summary An interface crack with an artificial contact zone at the right-hand side crack tip between two piezoelectric semi-infinite half-planes is considered under remote mixed-mode loading. Assuming the stresses, strains and displacements are independent of the coordinate x 2, the expression for the displacement jumps and stresses along the interface are found via a sectionally holomorphic vector function. For piezoceramics of the symmetry class 6 mm and for electrically permeable crack faces, the problem is reduced to a combined Dirichlet-Riemann boundary value problem which can be solved analytically. Further, analytical expressions for the stresses, electrical displacements, derivatives of elastic displacement jumps, stress and electrical intensity factors are found at the interface. Real contact zone lengths and the well-known oscillating solution are derived from the obtained solution as well. Analytical relationships between the fracture-mechanical parameters of various models are found, and recommendations are suggested concerning the application of numerical methods to the problem of an interface crack in the discontinuity area of a piezoelectric bimaterial. Received 16 March 1999; accepted for publication 31 May 1999  相似文献   

17.
Fracture occurs on multiple interacting length scales; atoms separate on the atomic scale while plasticity develops on the microscale. A dynamic multiscale approach (CADD: coupled atomistics and discrete dislocations) is employed to investigate an edge-cracked specimen of single-crystal nickel, Ni, (brittle failure) and aluminum, Al, (ductile failure) subjected to mode-I loading. The dynamic model couples continuum finite elements to a fully atomistic region, with key advantages such as the ability to accommodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly “converting” the atomistic dislocations into discrete dislocations, or vice-versa. An ad hoc computational technique is also applied to dissipate localized waves formed during crack advance in the atomistic zone, whereby an embedded damping zone at the atomistic/continuum interface effectively eliminates the spurious reflection of high-frequency phonons, while allowing low-frequency phonons to pass into the continuum region.The simulations accurately capture the essential physics of the crack propagation in a Ni specimen at different temperatures, including the formation of nano-voids and the sudden acceleration of the crack tip to a velocity close to the material Rayleigh wave speed. The nanoscale brittle fracture happens through the crack growth in the form of nano-void nucleation, growth and coalescence ahead of the crack tip, and as such resembles fracture at the microscale. When the crack tip behaves in a ductile manner, the crack does not advance rapidly after the pre-opening process but is blunted by dislocation generation from its tip. The effect of temperature on crack speed is found to be perceptible in both ductile and brittle specimens.  相似文献   

18.
A new experimental technique for accelerated fatigue crack growth tests was recently developed (Du et al., 2001). The technique, which uses piezoelectric actuators, enables application of cyclic loading at frequencies several orders higher than that by mechanical loading. However, the validity of this technique relies on the equivalence between piezoelectric and mechanical loading. In this paper, the behavior of an interfacial crack between a piezoelectric material and an elastic material under in-plane electric loading is studied. The displacement mismatch along a bonded interface due to electric potential loading on the piezoelectric material is modeled by inserting an array of uniformly distributed dislocations along the interface. By means of Fourier transformation methods, the governing equations are converted to an integral equation, which is then converted to a standard Hilbert problem. A closed form solution for stresses, electric field, and electric displacements along the bonded interface is obtained. The results agree very well with those obtained from numerical simulations. The results show that the closed form solution is accurate not only for far field distributions of stresses and electric variables, but also for the asymptotic distributions near the crack tip. The solution also suggests the likelihood of domain switching in the piezoelectric material near the crack tip, a process that may influence the interfacial fracture resistance.  相似文献   

19.
The interface crack problem of a bimaterial thermopiezoelectric solid was treated byapplying the extended version of Strohs formalism and singular integral equation approach. Theinterface crack considered is subjected to combined thermal, mechanical and electric loads.Under the applied loading, the interface crack is assumed to be partially opened. Formulation ofthe problem results in a set of singular integral equations which are solved numerically. Thestudy shows that the contact zone is extremely small in comparison with the crack length. Basedon the formulation, some physically meaningful quantities of interest such as stress intensityfactors and size of contact zone for a particular material group are analyzed.  相似文献   

20.
The paper addresses a plane problem for an infinite plane consisting of two different piezoceramic half-planes with an interfacial crack with smooth contact zones and subjected to the uniformly distributed electromechanical loading applied at infinity. Methods of complex-variable theory are used to reduce the problem to a Dirichlet-Riemann mixed homogeneous boundary-value problem. Its solution is found in closed form. A system with one crack that has one or two contact zones is calculated. Expressions for stresses, electric-flux density, and displacement discontinuities at the interface are written. Equations for the determination of the length of the contact zones and expressions for the stress intensity factors at the crack tips are derived __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 3, pp. 66–74, March 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号