首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this paper, a highly selective molecularly imprinted polymer (MIP) for tramadol hydrochloride, a drug used to treat moderate to severe pain, was prepared and its use as solid-phase extraction (SPE) sorbent was demonstrated. The molecularly imprinted solid-phase extraction procedure followed by high performance liquid chromatography with ultraviolet detector (MISPE-HPLC) was developed for selective extraction and determination of tramadol in human plasma and urine. The optimal conditions for molecularly imprinted solid-phase extraction (MISPE) consisted of conditioning with 1 mL methanol and 1 mL of deionized water at neutral pH, loading of tramadol sample (50 μg L−1) at pH 7.5, washing using 1 mL acetone and elution with 3 × 1 mL of 10% (v/v) acetic acid in methanol. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol. Results from the HPLC analyses showed that the calibration curve of tramadol (using MIP from human plasma and urine) is linear in the ranges of 6–100 and 3–120 μg L−1 with good precisions (1.9% and 2.9% for 5.0 μg L−1), respectively. The recoveries for plasma and urine samples were higher than 81%.   相似文献   

2.
S. Tatar Ulu 《Chromatographia》2006,64(3-4):169-173
A new, simple, rapid and specific reversed-phase high-performance liquid chromatography (HPLC) method was developed and validated for the determination of fluvoxamine in pharmaceutical dosage forms. The HPLC separation was achieved on a C18 μ-Bondapack column (250 mm × 4.6 mm) using a mobile phase of acetonitrile–water (80:20, v/v) at a flow rate of 1 mL min−1. Proposed method is based on the derivatization of fluvoxamine with 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS) in borate buffer of pH 8.5 to yield a orange product. The HPLC method is based on measurement of the derivatized product using UV-visible absorbance detection at 450 nm. The method was validated for specificity, linearity, precision, accuracy, robustness. The degree of linearity of the calibration curves, the percent recoveries of fluvoxamine, the limit of detection and quantification, for the HPLC method were determined. The assay was linear over the concentration range of 45–145 ng mL−1 (r = 0.9999). Limit of detection and quantification for fluvoxamine were 15 and 50 ng mL−1, respectively. The results of the developed procedure (proposed method) for fluvoxamine content in tablets were compared with those by the official method. The method was found to be simple, specific, precise, accurate, reproducible and robust.  相似文献   

3.
Tear gases are the most widely used non-lethal weapons, both by security forces and by the general public. The pepper spray, whose active agent is capsaicin, is the only self-defence aerosol allowed in Portugal, where capsaicin concentration must be below 5 g/100 mL. The cost-effective evaluation of the compliance of self-defence weapons with legislation involves the use of two measurement procedures with increasing quantitative capability. Samples are first assessed by preliminary measurement procedure based on single-point GC–MS calibration. Whenever the measurement uncertainty from this assessment makes evaluation inconclusive, the evaluation of sample compliance using multi-point GC–MS calibration is performed. Metrological models including sound criteria for the evaluation of sample compliance with legislation were developed for both measurement procedures. Such models include the evaluation of the impact of instrumental performance, calibration model, sample dilution and standards preparation on measurement uncertainty. The relative expanded uncertainty, in the studied range (capsaicin 3–7 g/100 mL), of measurements supported in single-point calibrations ranged from 10 to 22% and the ones supported on multi-point calibrations from 8 to 12% depending on capsaicin concentration and daily GC–MS repeatability. Measurements are fit for the intended use since they present a relative expanded uncertainty smaller than a target value of 30, or 15%, for measurements supported in single- or multi-point calibrations, respectively.  相似文献   

4.
The purpose of this study was to validate a reliable analytical method for pharmacokinetic study of ceftibuten in human plasma by high performance liquid chromatography (HPLC) system with UV detection. Ceftizoxime was used as the internal standard. After plasma sample was precipitated with acetonitrile and dichloromethane, the supernatant was directly injected into the HPLC system. Separation was performed on a Capcell Pak C18 UG120 column (4.6 mm × 250 mm, 5 μm particles) with a mobile phase of acetonitrile/50 mM ammonium acetate (5: 95, v/v) and UV detection at a wavelength of 262 nm. The intra- and inter-day precision expressed as the relative standard deviation was less than 15%. The lower limit of quantification was 0.5 hg/mL of ceftibuten using 0.5 mL of plasma. The calibration curve was linear in concentration range of 0.5–30 μg/mL (r 2 = 0.9998). The mean accuracy was 96–102%. The coefficient of variation (precision) in the intra- and inter-day validation was 0.9–3.9 and 0.9–2.4%, respectively. The pharmacokinetics of ceftibuten was evaluated after a single oral administration of 400 mg to healthy volunteers. The AUC0–9 h, c max, T max, and T 1/2 were 86.6 ± 12.7 μg h/mL, 18.4 ± 1.5 μg/mL, 2.63 ± 0.83 and 2.65 ± 0.41 h, respectively. The method was demonstrated to be highly reproducible and feasible for pharmacokinetic studies of ceftibuten in eight volunteers after oral administration (400 mg as ceftibuten).  相似文献   

5.
A sensitive analytical method for simultaneous quantification of sub-nanogram concentrations of cannabidiol (CBD), Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH) in plasma is presented for monitoring cannabinoid pharmacotherapy and illicit cannabis use. Analytes were extracted from 1 mL plasma by solid-phase extraction, derivatized with N,O-bis(trimethylsilyl) trifluoroacetamide with 1% trimethylchlorosilane, and analyzed by two-dimensional gas chromatography mass spectrometry (2D-GCMS) with cryofocusing. The lower calibration curve was linear from 0.25–25 ng/mL for CBD and THC, 0.125-25 ng/mL for 11-OH-THC and 0.25-50 ng/mL for THCCOOH. A second higher linear range from 5–100 ng/mL, achieved through modification of injection parameters, was validated for THC, 11-OH-THC, and THCCOOH and was only implemented if concentrations exceeded the lower curve upper limit of linearity. This procedure prevented laborious re-extraction by allowing the same specimen to be re-injected for quantification on the high calibration curve. Intra- and inter-assay imprecision, determined at four quality control concentrations, were ≤7.8% CV. Analytical bias was within ±9.2% of target and extraction efficiencies were ≥72.9% for all analytes. Analytes were stable when stored at 22°C for 16 h, 4°C for 48 h, after three freeze–thaw cycles at −20°C and when stored on the autosampler for 48 h. This sensitive and specific 2D-GCMS assay provides a new means of simultaneously quantifying CBD, THC and metabolite biomarkers in clinical medicine, forensic toxicology, workplace drug testing, and driving under the influence of drugs programs.  相似文献   

6.
 The method is based on catalysed ignition of a sample portion in a flow of oxygen, capture of mercury by an amalgamator and measurement of the mercury vapour's absorbance after thermic release from the amalgamator. Three powdered food samples, a certified reference material (CRM) human hair and a reference material (RM) urine (liquid) were measured in the first range of the instrument (the possible contents determined according to our measurement procedure were 0.0003–0.5 ppm). The calibration function used was a line passing through the origin. The combined standard uncertainties of the mercury determinations were computed from uncertainty components of five quantities: absorbance of the sample, absorbance of the sample blank, slope of the calibration line, correction factor of the abscissa axis, and mass or volume of the sample. The most important uncertainty component is the uncertainty of the sample absorbance measurement which amounts to 52% of the determination uncertainty at the minimum (RM urine) and about 90% at the maximum (in our laboratory homogenized powdered food samples; analysis of variance showed their homogeneity to be insufficient). The results of the CRM and RM analyses do not indicate a significant systematic error for this determination. The relative expanded uncertainty (coefficient was 2) of the determination increases from 9 to 13% for the insufficiently homogenized samples with decreasing mercury content (range of 0.004–0.03 ppm); higher homogeneity of samples results in a decrease of the expanded uncertainty, e.g. 4.6% for the liquid sample (RM urine). Received: 26 April 1999 / Accepted: 30 August 1999  相似文献   

7.
A procedure has been developed for the determination of a macrolide antibiotic roxythromycin (RX) in blood serum using HPLC with mass spectrometric detection using clarithromycin (CL) as the internal standard. RX and CL have been extracted from the samples by solid-phase extraction in a cartridge filled with a polar adsorbent, cyanopropylsilyl silica gel. The absolute recoveries of RX and CL are 89.6 and 92.5%, respectively. Chromatographic separation has been performed on a Nucleodur C18 Isis column with the mobile phase composed as follows: water-methanol-acetonitrile-formic aid (499: 250: 250: 1 by volume). Registration has been performed in the mode of selected ion monitoring with m/z 837.7 (RX) and m/z 748.7 (CL). The analytical range for RX is 0.097–14.81 μg/mL, the quantification limit is 0.097 μg/mL, the detection limit is 0.03 μg/mL, and the intraday and interday relative standard deviation are 2–6 and 4–8% respectively. The procedure has been applied to the pharmacokinetic studies of the Rulid pharmaceutical preparation.  相似文献   

8.
A salting-out assisted liquid extraction coupled with back-extraction by a water/acetonitrile/dichloromethane ternary component system combined with high-performance liquid chromatography with diode-array detection (HPLC–DAD) was developed for the extraction and determination of sulfonamides in solid tissue samples. After the homogenization of the swine muscle with acetonitrile and salt-promoted partitioning, an aliquot of 1 mL of the acetonitrile extract containing a small amount of dichloromethane (250–400 μL) was alkalinized with diethylamine. The clear organic extract obtained by centrifugation was used as a donor phase and then a small amount of water (40–55 μL) could be used as an acceptor phase to back-extract the analytes in the water/acetonitrile/dichloromethane ternary component system. In the back-extraction procedure, after mixing and centrifuging, the sedimented phase would be water and could be withdrawn easily into a microsyringe and directly injected into the HPLC system. Under the optimal conditions, recoveries were determined for swine muscle fortified at 10 ng/g and quantification was achieved by matrix-matched calibration. The calibration curves of five sulfonamides showed linearity with the coefficient of estimation above 0.998. Relative recoveries for the analytes were all from 96.5 to 109.2% with relative standard deviation of 2.7–4.0%. Preconcentration factors ranged from 16.8 to 30.6 for 1 mL of the acetonitrile extract. Limits of detection ranged from 0.2 to 1.0 ng/g.  相似文献   

9.
Summary A new highly sensitive high-performance liquid chromatographic (HPLC) procedure for determination of EGIS-9933 (a newly developed anxiolytic compound) in rat plasma is described. A gradient, elution method with UV detection at 270 nm has been developed using a mobile phase of a mixture of A: methanol:acetonitrile 1:9 and B:0.5% triethilamine in water, the pH of B was adjusted to 3 with phosphoric acid. Solid phase extraction (SPE) was used for the sample preparation. The calibration was linear in the 10–10000 ng mL−1 concentration range. The limit of quantification was 10 ng mL−1. The bioanalytical method was validated according to internationally accepted criteria for biological samples. Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 3–5, 1997.  相似文献   

10.
A simple, economic, selective, precise, and accurate high-performance liquid chromatographic (HPLC) method for the analysis of trimetazidine hydrochloride in both bulk drug and pharmaceutical formulations was developed and validated in the present study. The mobile phase consisted of water: methanol: triethylamine (75: 25: 0.1 v/v/v), and pH 3.3 was adjusted with orthophosphoric acid. This system was found to give a sharp peak of trimetazidine hydrochloride at a retention time of 3.375 ± 0.04 min. HPLC analysis of trimetazidine hydrochloride was carried out at a wavelength of 232 nm with a flow rate of 1.0 mL/min. The linear regression analysis data for the calibration curve showed a good linear relationship with a regression coefficient of 0.997 in the concentration range of 5–90 μg/mL. The linear regression equation was y = 35362x − 8964.2. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 3.6 and 10.9 μg/mL, respectively. The developed method was employed with a high degree of precision and accuracy for the analysis of trimetazidine hydrochloride. The developed method was validated for accuracy, precision, robustness, detection, and quantification limits as per the ICH guidelines. The wide linearity range, accuracy, sensitivity, short retention time, and composition of the mobile phase indicated that this method is better for the quantification of trimetazidine hydrochloride. The text was submitted by the authors in English.  相似文献   

11.
A micro-solid phase extraction technique was developed using a novel polypyrrole-polyamide nanofiber sheet, fabricated by electrospinning method. The applicability of the new nanofiber sheet was examined as an extracting medium to isolate malathion as a model pesticide from aqueous samples. Solvent desorption was subsequently performed in a microvial, and an aliquot of extractant was injected into gas chromatography–mass spectrometry. Various parameters affecting the electrospinning process including monomer concentration, polyamide content, applied voltage, and electrospinning time were examined. After fabricating the most suitable preparation conditions, influential parameters on the extraction and desorption processes were optimized. The developed method proved to be rather convenient and offers sufficient sensitivity and good reproducibility. The limit of detection (S/N = 3) and limit of quantification (S/N = 10) of the method under optimized conditions were 50 and 100 ng L−1, respectively. The relative standard deviation at concentration level of 1 ng mL−1 was 2% (n = 3). The calibration curve of analyte showed linearity in the range of 0.1–1 ng mL−1 (R 2 = 0.9975). The developed method was successfully applied to tap and Zayanderood river water samples, while the relative recovery percentages of 98% and 96% were obtained, respectively. The whole procedure showed to be conveniently applicable and quite easy to be manipulated.  相似文献   

12.
Two rapid and popular methods—capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) have been compared for analysis of cotinine in human urine. Cotinine was analyzed in less than 7 min, with detection limits of 5 and 3.2 ng mL−1 for CE and HPLC, respectively. The performance of the methods was evaluated in terms of sensitivity, specificity, precision, accuracy, and limits of detection and quantification. Calibration plots were linear in the range 50–4,000 ng mL−1, at least, and mean recoveries were satisfactory for both techniques. The methods were successfully used for quantification of cotinine in urine.  相似文献   

13.
A sensitive and useful method based on solid-phase microextraction with micellar desorption (SPME-MD) coupled to HPLC with fluorescence detection was developed for the determination of five fluoroquinolones (levofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, and sarafloxacin) in environmental water matrices. The SPME extraction efficiency was optimized with regard to time, temperature, pH, and ionic strength using a CW-TPR fiber. A detailed study about the optimum conditions for micellar desorption (surfactant type, concentration, and desorption time) were made. Among different surfactants studied, Polyoxyethylene 10 lauryl ether showed the best responses to extract fluoroquinolones using SPME-MD. Relative standard deviations of the developed method were below 9%. Limits of detection and quantification were between 0.01–0.2 and 0.03–0.6 ng mL−1, respectively. The recoveries achieved for all five compounds were in the 81–116% range. The proposed method was compared using conventional desorbing agent as methanol. Finally, the SPME-MD methodology was applied to the determination of these target analytes in several environmental liquid samples, including seawater, groundwater, and wastewater samples with excellent results.  相似文献   

14.
A flow-cell for micro-porous membrane liquid–liquid extraction with a sheet membrane was used to extract 2-ethylhexyl 4-(dimethylamino) benzoate (EDB) from urine of solar-cream users and spiked wine samples. The cell enabled the target analyte to be extracted from 7.9 mL of donor solution into 200 μL of acceptor solution (decane). After extraction, the acceptor solution was transferred to a micro-vial for GC-MS analysis without derivation. In this work, variables affecting the enrichment factor were also studied, such as organic solvent, extraction time, recirculation flow of the donor solution through the donor chamber, presence of potassium chloride and ethanol in the donor solution and pH. The method has been evaluated in terms of linearity, sensitivity, precision, limits of detection and quantification and extraction efficiency. Limits of quantification were 1 and 3 μg L−1 EDB for urine and wine, respectively. Quantitative analysis has been carried out by applying the method of standard additions. Within- and between-day relative standard deviations were lower than 12% and 20%, respectively. EDB was found in the urine of users of cream containing EDB in the concentration interval 1.2–7.2 μg L−1. Therefore, this provides evidence of EDB dermal absorption and subsequent excretion through the urinary tract. EDB was not found in the analysed wine samples.  相似文献   

15.
A simple, sensitive, and useful concentration method for lovastatin (Lvt) in urine has been developed based on the transient moving chemical reaction boundary method (tMCRBM) in capillary electrophoresis. The MCRB is formed with acidic sample buffer (Gly-HCl) and alkaline running buffer (Gly-NaOH). The following optimal conditions were determined for stacking and separation: electrophoretic buffer of 100 mM Gly- NaOH (pH 11.52), sample buffer of 20 mM Gly-HCl (pH 4.93), fused-silica capillary of 76 cm × 75-μm i.d (67 cm from detector), sample injection at 14 mbar for 3 min. A 21- to 26-fold increase in peak height was achieved for detection of Lvt in urine under the optimal conditions compared with normal capillary zone electrophoresis. By combining the sample pretreatment procedure with the stacking method, the sensitivity of Lvt in urine was increased by 105- to 130-fold. The limits of detection (LOD) and quantification (LOQ) for Lvt in urine were decreased to 8.8 ng/mL and 29.2 ng/mL, respectively. The intra-day and inter-day precision values (expressed as RSD) were 2.23–3.61% and 4.03–5.05%, respectively. The recoveries of the analyte at three concentration levels changed from 82.65 to 100.49%.  相似文献   

16.
Summary A simple and sensitive method has been developed for the liquid chromatographic determination of short-chain aliphatic amines in water. Analytes are retained in solid-phase extraction (SPE) cartridges, and then derivatized by drawing an aliquot of the fluorogeneic reagent 9-fluorenylmethyl chloroformate (FMOC) through the cartridges. After a certain reaction time the derivatives formed are desorbed with acetonitrile. The collected extracts are then chromatographed on a LiChrospher 100 RP18 125 mm×4 mm i.d., 5 μm, column using an acetonitrile-water gradient. The influence of experimental conditions (SPE material, volume of sample, concentration of FMOC, time of reaction and pH) has been investigated. Optimal results have been obtained with C18 SPE cartridges using a sample volume of 5.0 mL. For derivatization, 0.25 mL aliquots of 25 mM FMOC have been used, the reaction time being only 2 min. The method has been applied to the quantification of several aliphatic amines: methylamine, ethylamine, dimethylamine,n-butylamine,n-pentylamine andn-hexylamine. Under the proposed conditions the percentages of analytes retained plus derivatized were of about 54–107% compared to those obtained with direct solution derivatization. The method provided good reproducibility, linearity and accuracy within the 0.050–1.0 mg L−1 concentration range. The limits of detection were in the 0.25–5.0 μg L−1 range. The utility of the described approach has been tested by analysing tap water, river water and industrial waste water.  相似文献   

17.
A sensitive and specific liquid chromatographic method with electrospray ionization mass spectrometry (LC–ESI-MS) has been developed and validated for identification and quantification of mitiglinide in human urine. A simple liquid–liquid extraction procedure was followed by separation on a C18 column with gradient elution, and detection using a single-quadrupole mass spectrometer in selected-ion-monitoring (SIM) mode. The method was tested using six different batches of urine. Linearity was established for the mitiglinide concentrations in the range 0.005–1.0 μg mL−1, with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. Intra- and inter-day precision (as RSD, %) was below 10% and accuracy for mitiglinide ranged from 85 to 115%. The lower limit of quantification was reproducible at 0.002 μg mL−1 for 500 μL urine. The proposed method enables unambiguous identification and quantification of mitiglinide in pre-clinical and clinical studies.  相似文献   

18.
A method for carbonic anhydrase II (CA II) absolute quantification in human serum is presented. This method is based on high-performance liquid chromatography (HPLC)-Chip microfluidic device incorporating a nanoelectrospray source interfaced to a triple quadrupole mass spectrometer. The fraction containing CA II was isolated by preparative reversed-phase HPLC, and peptides obtained from the tryptic digest of the protein mixture were separated by the HPLC-Chip system. The multiple-reaction monitoring acquisition mode of a selected suitable CA II peptide and peptide internal standard allowed the selective and sensitive determination of a CA II. Absolute recovery of the method was 52 ± 12%, while analytical recovery was 81 ± 10%. For the eight samples analyzed, the matrix effect was found to be only −14 ± 6%. A comparison among three regression lines type which were obtained by external calibration, matrix-matched calibration, and standard addition method, respectively, demonstrated that the first one is adequate in obtaining good accuracy and precision. Method quantification limit for CA II in serum was estimated to be 2 fmol/mL. CA II mean concentration in sera from eight healthy subjects was found to be 56 pmol/mL (relative standard deviation 24%).  相似文献   

19.
A sensitive method based on high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed for the determination of carbamazepine (CBZ) and one of its active metabolites, carbamazepine-10,11-epoxide (CBZ-E) in human plasma. CBZ, CBZ-E and the internal standard (IS) 10,11-dihydrocarbamazepine were extracted from human plasma into methyl tert-butyl ether. CBZ, CBZ-E and the IS were successfully separated on an RP C18 column with a mobile phase of acetonitrile:methanol:water (18:19:63, v/v/v) and monitored via UV detection at 210 nm. The calibration curves were linear over the concentration ranges of 0.01–10 μg/mL for CBZ and 0.005–5 μg/mL for CBZ-E in human plasma, respectively. The method displayed excellent sensitivity, precision and accuracy, and was successfully applied to the quantification of CBZ and CBZ-E in human plasma after oral administration of a single 200 mg CBZ CR tablet. This method is suitable for bioequivalence studies following single doses given to healthy volunteers.  相似文献   

20.
A liquid chromatography–tandem mass spectrometry method for the simultaneous quantification of buprenorphine (BUP), norbuprenorphine (NBUP), buprenorphine glucuronide (BUP-Gluc), and norbuprenorphine glucuronide (NBUP-Gluc) in human urine was developed and fully validated. Extensive endogenous and exogenous interferences were evaluated and limits of quantification were identified empirically. Analytical ranges were 5–1,000 ng/mL for BUP and BUP-Gluc and 25–1,000 ng/mL for NBUP and NBUP-Gluc. Intra-assay and interassay imprecision were less than 17% and recovery was 93–116%. Analytes were stable at room temperature, at 4 °C, and for three freeze–thaw cycles. This accurate and precise assay has sufficient sensitivity and specificity for urine analysis of specimens collected from individuals treated with BUP for opioid dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号