首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultra-fast electronic and thermal processes for the energy deposition mechanism during femtosecond laser ablation of Si have been identified by means of atomic force microscopy and Raman scattering techniques. For this purpose, Si targets were exposed with 800-nm, 25-fs Ti:sapphire laser pulses for different laser fluencies in air and under UHV (ultra high vacuum) conditions. Various nano- and microstructures on the surface of the irradiated samples are revealed by a detailed surface topography analysis. Ultra-fast electronic processes are dominant in the lower-fluence regime. Therefore, by starting from the ablation threshold three different fluence regimes have been chosen: a lower-fluence regime (0.06–0.5 J?cm?2 single-shot irradiation under UHV condition and 0.25–2.5 J?cm?2 single-shot irradiation in ambient condition), a moderate-fluence regime (0.25–1.5 J?cm?2 multiple-shot irradiation), and a higher-fluence regime (2.5–3.5 J?cm?2 multiple-shot irradiation). Around the ablation threshold fluence, most significant features identified at the Si surface are nanohillock-like structures. The appearance of these nanohillocks is regarded as typical features for fast electronic processes (correlated with existence of hot electrons) and is explained on the basis of Coulomb explosion. The growth of these typical features (nanohillocks) by femtosecond laser irradiation is an element of novelty. At moderate irradiation fluence, a ring-shaped ablation with larger bumps and periodic surface structures is observed and is considered as a footprint of ultra-fast melting. Further increase in the laser fluence, i.e. a higher-fluence regime, resulted in strong enhancement of the thermal process with the appearance of larger islands. The change in surface topography provides an innovative clue to differentiate between ultra-fast electronic processes, i.e. Coulomb explosion (sub-100 fs) at a lower-fluence regime and ultra-fast melting (hundreds of fs) at a moderate-fluence regime, and slow thermal processes (ps time scale) at a higher-fluence regime. These fast electronic and thermal processes are well correlated to structural and crystallographic alterations, inferred from Raman spectroscopy.  相似文献   

2.
Laser action is demonstrated in a 20-mm-long waveguide fabricated on an Er:Yb-doped phosphate glass by femtosecond laser pulses. An output power of 1.7 mW with approximately 300 mW of pump power coupled into the waveguide is obtained at 1533.5 nm. Waveguides are manufactured with the 520-nm radiation from a frequency-doubled, diode-pumped, cavity-dumped Yb:glass laser operating at a 166-KHz repetition rate, with a 300-fs pulse duration.  相似文献   

3.
We demonstrate sub-100-fs resolution of a cross-correlation method for measuring the duration of soft-X-ray pulses. The method uses the ultra-fast increase in a singly charged ion population induced by optical-field ionization as a soft-X-ray -absorption switch. We measured the pulse duration of the 51st harmonic of a Ti:sapphire laser pulse using Kr gas as a soft-X-ray absorption medium and found it to be 60 fs assuming that the harmonic envelope is equal to a squared secant hyperbolic. This confirmed that our method achieves a shorter temporal resolution than the 100-fs pulse duration of the ionizing laser pulse. The temporal resolution obtained in this way is expected to be from one-third to one-half the duration of the ionizing laser pulse, according to our calculation of the time-evolving population of the Kr+ ions. The experimental demonstration and calculation show that methods based on optical-field-induced ionization are promising for femtosecond temporal characterization of an ultra-short pulse in the soft-X-ray region. PACS 42.50.Hz; 42.65.Ky; 32.80.Rm; 06.60.Jn  相似文献   

4.
The ablation in zinc selenide (ZnSe) crystal is studied by using 150-fs, 800-nm laser system. The images of the ablation pit measured by scanning electronic microscope (SEM) show no thermal stress and melting dynamics. The threshold fluence is measured to be 0.7 J/cm2. The ultrafast ablation dynamics is studied by using pump and probe method. The result suggests that optical breakdown and ultrafast melting take place in ZnSe irradiated under femtosecond laser pulses.  相似文献   

5.
结合飞秒激光在研究分子激发态弛豫动力学中的应用,介绍了几种飞秒时间分辨实验中确定泵浦激光脉冲与探测激光脉冲的相关函数和时间零点的方法.对于波长在可见波段的泵浦和探测激光脉冲,我们可以利用非线性光学的技术手段,探测泵浦光与探测光的和频光的强度随二者间的时间延迟的变化来确定相关函数和时间零点;对于波长在紫外甚至更短的波段的泵浦和探测激光脉冲,由于单脉冲能量比较低,目前还很难利用技术手段来测定泵浦激光与探测激光的相关函数及时间零点,可以利用某些原子气体(如Xe)或某些具有短寿命态的分子作平行实验进行间接测量.  相似文献   

6.
Liao HB  Xiao RF  Fu JS  Wang H  Wong KS  Wong GK 《Optics letters》1998,23(5):388-390
Three sorts of probe laser, which have pulse durations of 200 fs, 35 ps, and 70 ps, were employed in the measurement of the third-order nonlinear optical susceptibility x((3)) in Au:SiO(2) composite films in a degenerate four-wave mixing scheme. We found that the composite films at their absorption peak (~550 nm) had a maximum x((3)) , which depends strongly on the pulse width of the probe laser. The value of x((3)) measured with a 70-ps laser was ~30 times larger than that measured with a 200-fs laser. The time-resolved measurements revealed that the optical nonlinearity on the femtosecond time scale is attributable mainly to contributions from the interband electric-dipole transition (especially at low concentrations) and partly to those from hot electrons rather than being dominated by hot-electron excitation in the picosecond regime.  相似文献   

7.
We have investigated the ultra-fast microdrilling of metals using a compact and cheap fiber amplified passively Q-switched microchip laser. This laser system delivers 100-ps pulses with repetition rates higher than 100 kHz and pulse energies up to 80 μJ. The ablation process has been studied on metals with quite different thermal properties (copper, carbon steel and stainless steel). The dependence of the ablation depth per pulse on the pulse energy follows the same logarithmic scaling laws governing laser ablation with sub-picosecond pulses. Structures ablated with 100-ps laser pulses are accompanied only by a thin layer of melted material. Despite this, results with a high level of precision are obtained when using the laser trepanning technique. This simple and affordable laser system could be a valid alternative to nanosecond laser sources for micromachining applications.  相似文献   

8.
超短脉冲照射下氟化锂的烧蚀机理及其超快动力学研究   总被引:7,自引:0,他引:7  
研究了超短脉冲激光照射下LiF晶体的破坏机理及其超快动力学过程,利用扫描电镜和原子力显微镜等测试手段,观测了飞秒激光照射下LiF晶体的烧蚀形貌。利用烧蚀面积与激光脉冲能量的对数关系确定了LiF晶体的破坏阈值,并利用非线性玻璃棒展宽脉宽,得到了800nm激光作用下LiF破坏阈值对激光脉宽(50~1000fs)的依赖关系;利用抽运一探针超快探测平台,探测了LiF烧蚀过程中反射率的变化。采用雪崩击穿模型,并根据晶体材料反射率与材料的介电常量的依赖关系,通过数值计算,模拟了材料烧蚀阈值与脉宽的依赖关系及材料激发过程中反射率的变化关系。结果表明,理论结果与实验结果符合较好。讨论了飞秒激光照射下LiF晶体中导带电子数密度的变化规律,并解释了相应的实验结果。  相似文献   

9.
In this study, a new process of glass micro-prism structures is investigated by an ultra-fast laser irradiation with chemical etching process. The ultra-fast laser is employed by an all-in-one femtosecond laser (FS-laser) system with the amplifier as an excitation source for patterning the structures. Here, the center wavelength of laser is frequency-doubled to 517 nm. Besides, the repetition rate and pulse width of laser are 100 kHz and 350 fs, respectively. First, the embedded gratings of glass with different pitches can be fabricated using a FS-laser process. Afterwards, the glass samples are placed in the hydrofluoric acid (HF) solution for 15 min to develop structures. Finally, the results of this study demonstrated that the V-cut micro-prisms are successfully formed by controlling etching concentration between intrinsic glass material and modified areas.  相似文献   

10.
Recently, a so-called “directly induced” laser ablation effect has been reported, where an ultra-short laser pulse (660 fs and 1053 nm) irradiates a thin Mo film through a glass substrate, resulting in a “lift-off” of the irradiated layer in form of a thin, solid, cylindrical fragment. This effect provides a new and very energy-efficient selective structuring process for the Mo back electrode in thin-film solar cell production. To understand the underlying physical mechanisms, a 3D axisymmetric finite element model was created and numerically solved. The model is verified by a direct comparison of experimental and numerical results. It includes volume absorption of the laser pulse, heat diffusion in the electron gas and the lattice, thermal expansion of the solid phase and further volume expansion from phase transition to fluid and gas, and finally the mechanical motion of the layer caused by the resulting stress wave and the interaction with the substrate. The simulation revealed that irradiation of the molybdenum layer with an ultra-short pulse causes a rapid acceleration in the direction of the surface normal within a time frame of a hundred picoseconds to a peak velocity of about 100 m/s. The molybdenum layer continues to move as an oscillating membrane, and finally forms a dome after about 100 ns. The calculated strain at the edges of the dome exceeds the tensile stress limit at fluences that initiate the “lift-off” in experimental investigations. In addition, the simulation reveals that the driving mechanism of the “lift-off” is the ultrafast expansion of the interface layer and not the generated gas pressure.  相似文献   

11.
测量时间分辨拉曼谱实验装置的研制王晶晶金榕周赫田邹英华(北京大学物理系人工微结构及介观物理国家重点实验室北京100871)孙志勇(北京理工大学四系431教研室北京100081)TheExperimentalSetupforTime-ResolvedR...  相似文献   

12.
Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber   总被引:3,自引:0,他引:3  
A Raman-shifted and frequency-doubled high-power Er-fiber soliton laser for seeding an efficient high-power Yb fiber femtosecond amplifier is demonstrated. The Raman-shifted and frequency-doubled Er-soliton laser is tunable from 1.00 to 1.070microm and produces bandwidth-limited 24-pJ pulses at a repetition rate of 50 MHz with a FWHM pulse width of 170 fs at 1.040microm . The Yb(3+) amplifier has a slope efficiency of 52% and generates 3-ps linearly chirped pulses with an average power of 0.8 W at 1.05microm . After pulse compression, 74-fs bandwidth-limited pulses with an average power of 0.4 W and a pulse energy of 8 nJ are generated.  相似文献   

13.
Ultra-fast x-ray-dynamic experimental subsystem is a facility which can provide femtosecond hard x-ray sources using a femtosecond laser interacting with plasmas. By utilizing these ultra-fast x-rays as a probe, combined with a naturally synchronized driver laser as a pump, we can perform dynamic studies on samples with a femtosecond time resolution.This subsystem with a four-dimensional ultra-high spatiotemporal resolution is a powerful tool for studies of the process of photosynthesis, Auger electron effects, lattice vibrations, etc. Compared with conventional x-ray sources based on accelerators, this table-top laser-driven x-ray source has significant advantages in terms of the source size, pulse duration,brightness, flexibility, and economy. It is an effective supplement to the synchrotron light source in the ultrafast detection regime.  相似文献   

14.
Ultrafast nonlinear optical properties of lead(II) phthalocyanine (PbPc)-doped silica gel glasses were investigated using a femtosecond optical Kerr shutter (OKS) setup at wavelength of 800 nm. The nonlinear response time of the PbPc-doped silica gel glasses was measured to be less than 90 fs. Measurements for the dependence of Kerr signals on the polarization angle between pump and probe beams showed that the Kerr signals induced by 30-fs pulses arose mainly from photoinduced birefringence effect and not from a laser-induced transient grating as observed when using a 200-fs pulse laser.  相似文献   

15.
We show that, in the case of sum-frequency mixing, one can alleviate group-velocity mismatch between IR and UV pulses by choosing different pulse widths, thus extending the interaction length of ultrashort pulses within nonlinear crystals. By fifth-harmonic generation with a Nd:glass laser, we demonstrate efficient frequency upconversion of 195-fs 264-nm pulses under the envelope of 0.9-ps 1055-nm pulses in beta-barium borate crystal, yielding <270-fs pulses with energy of up to 110muJ at 211 nm.  相似文献   

16.
Stretched pulse Yb(3+)silica fiber laser   总被引:7,自引:0,他引:7  
We report what we believe to be the first results on short-pulse generation in Yb(3+) :silica fiber. By applying the stretched pulse technique in a unidirectional, polarization-switch Yb(3+) fiber laser incorporating a prism-based dispersive delay line, we obtain self-start mode locking and 100-pJ pulses that can be compressed to give clean chirp-free <100-fs pulses. We believe such sources to have great potential for use not only in all-solid-state, high-power femtosecond pulse systems based on Yb(3+) :silica glass but also as seeds for conventional Nd(3+) :glass amplifier chains.  相似文献   

17.
Femtosecond laser application for high capacity optical data storage   总被引:2,自引:0,他引:2  
A femtosecond (fs) laser application for multi-layer optical recording is investigated. Information patterns at different layer depths were written inside a transparent glass substrate due to micro-void formation by fs laser ablation, which causes re-distribution in glass materials and a refractive index modification. The information bits recorded in a single layer can be retrieved clearly without interference from the neighboring layers. A fs laser irradiation of a transparent polymer matrix (doped with fluorescent materials for use as low-cost recording media) is also studied. A fs laser induced photo-chemical reaction changes the chemical properties of the fluorescent materials and records information bits inside the matrix. With an ultra-fast laser as a new light source, 3D optical recording can be available for high capacity data storage up to 1 TB per disc. PACS 82.50.-m; 42.65. Re; 72.70.Jk.  相似文献   

18.
The structure and evolution of the laser-induced vapor plume and shockwave were measured from femtosecond time resolved shadowgraph images. By changing the wavelength of the probe beam (400 and 800 nm), differences in the opacity of the vapor plume were measured as a function of delay time from the ablation laser pulse. The evolution of the temperature and electron number density during and after the ablation laser pulse were determined and compared for ablation in argon and helium background gases. A laser supported detonation wave (LSD) observed for ablation in argon, blocks the incoming laser energy and generates a high-pressure region above the vapor plume.  相似文献   

19.
Zhu CJ  He JF  Wang SC 《Optics letters》2005,30(5):561-563
We obtain synchronized 45-fs and 0.848-ps pulses by achieving cross-mode locking in a double-cavity dual-wavelength femtosecond Ti:sapphire laser. Autocorrelation and cross correlation show that the femtosecond and picosecond pulses are well synchronized, with a timing jitter of 41 fs. Cross-phase modulation dominates the processes of cross-mode locking and synchronization.  相似文献   

20.
The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump–probe experiments. Among others, the low‐α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low‐α mode of the experimental set‐ups developed at the TEMPO beamline to perform pump–probe experiments with soft X‐rays based on photoelectron or photon detection are presented. A 282 kHz repetition‐rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two‐dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time‐resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high‐time‐resolution pump–probe experiments compared and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号