首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
With phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films prepared using filtered cathodic vacuum arc technique with PH3 as the dopant source, we investigate the effect of phosphorus content on the structural properties of the films by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. XPS analysis indicates that a function is established between the atomic fraction of phosphorus in the samples and the flow rate of PH3 during deposition, and that phosphorus implantation increases the graphite-like trihedral sp2 bonds deduced from fitted C 1s and P 2p core level spectra. Raman spectra of a broad range show that there are two notable features for all ta-C:P films: the first-order band centered at about 1560 cm-1 and the second-order band between 2400 and 3400 cm-1. The broad first-order band demonstrates that the amorphous structure of all samples does not remarkably change when a lower flow rate of PH3 is implanted, while a higher concentration of phosphorus impurity enhances the clustering of sp2 sites dispersed in sp3 skeleton and the evolution of structural ordering. Furthermore, the second-order Raman spectra confirm the formation of small graphitic crystallites in size due to a finite-crystal-size effect. PACS 81.05.Uw; 81.15.Ef; 63.50.+x  相似文献   

2.
There are higher technical requirements for protecting layer of magnetic heads and disks used in future high-density storage fields. In this paper, ultra-thin (2 nm thickness) tetrahedral amorphous carbon (ta-C) films were firstly prepared by filtered cathodic vacuum arc (FCVA) method, then a series of nitriding treatments were performed with nitrogen plasma generated using electron cyclotron resonance (ECR) microwave source. Here it highlighted the influence of nitrogen flow and applied substrate bias voltage on the structural characteristics of ta-C films during the plasma nitriding process. The chemical compositions, element depth distribution profiles, physical structures and bonding configurations of plasma-nitrided ta-C films were investigated by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and UV-vis Raman spectroscopy. The experimental results show that the carbon nitride compounds (CNx) are formed in nitrogenated ta-C films in which the N content and its depth distribution depends on bias voltage to large extent rather than N2 flow. The N content of nitrogenated ta-C films can reach 16 at.% for a substrate bias of −300 V and a N2 flow of 90 sccm. With increasing nitrogen content, there is less G peak dispersion and more ordering of structure. Furthermore, appropriate nitriding treatment (substrate bias: −100 V, N2 flow: 150 sccm) can greatly increase the fraction of sp3 and sp3C-N bonds, but the values begin to fall when the N content is above 9.8 at.%. All these indicate that suitable ECR-assisted microwave plasma nitriding is a potential modification method to obtain ultra-thin ta-C films with higher sp3 and sp3C-N fractions for high-density magnetic storage applications.  相似文献   

3.
Electron field emission properties of tetrahedral amorphous carbon films (ta-C) with various sp3 fractions, [sp3]/([sp2]+[sp3]), prepared by magnetic filtered plasma deposition system, were investigated. The ta-C films were deposited on (100) n-Si wafer with a resistivity of 0.01–0.02 cm in a substrate bias voltage Vb range from +20 V to -80 V. The relative fraction of sp3-bonded carbon in these films was qualitatively and quantitatively estimated by a fitting of the Raman and XPS spectra, respectively. Results show that ta-C films of high sp3 fraction, more than 80%, can be formed with a substrate bias voltage Vb in the range from -10 to -50 V. A remarkably low turn-on field of about 1.7 V/m was observed for these samples. For Vb outside this range, the sp3 fraction is lower. The surface of such ta-C films was found to be smooth and uniform from the images of atomic force microscopy. The sp3 fraction of the sample is believed to be the main factor affecting field emission properties of ta-C films. PACS 79.70; 78.30; 73.90.+f  相似文献   

4.
采用过滤阴极真空电弧技术,通过施加0—2000 V衬底负偏压使沉积离子获得不同能级的入射能量,在单晶硅上制备了四面体非晶碳薄膜.拉曼光谱分析表明,薄膜的结构为非晶sp3骨架中镶嵌着平面关联长度小于1 nm的sp2团簇.原子力显微镜研究表明:在低能级、富sp3能量窗口和次高能级,薄膜中sp3的含量越多,其表面就越光滑,应用sp3浅注入生长机制能够圆满地解释薄膜表面形态与离子入射能量之间的关系;但在高 关键词: 四面体非晶碳 过滤阴极真空电弧 能级  相似文献   

5.
The haemocompatibility of phosphorus-incorporated tetrahedral amorphous carbon (ta-C:P) films, synthesized by filtered cathodic vacuum arc technique with PH3 as the dopant source, was assessed by in vitro platelet adhesion tests. Results based on scanning electron microscopy and contact angle measurements reveal that phosphorus incorporation improves the wettability and blood compatibility of ta-C film. Our studies may provide a novel approach for the design and synthesis of doped ta-C films to repel platelet adhesion and reduce thrombosis risk.  相似文献   

6.
This paper reports the electrical, mechanical, structural and field emission properties of as grown and also boron and phosphorous incorporated tetrahedral amorphous carbon (ta-C) films, deposited using a filtered cathodic vacuum arc process. The effect of varying boron and phosphorous content (up to 2.0 at.% in to ta-C) on the conductivity (σD), activation energy (ΔE1), hardness, microstructure, emission threshold (Eturn-ON) and emission current density (J) at 12.5 V/μm of ta-C: B and ta-C: P films deposited at a high negative substrate bias of −300 V are reported. It is observed that both boron and phosphorous incorporation leads to a nearly an order increase in σD and corresponding decrease in ΔE1 and a slight increase in hardness as compared to as grown ta-C films. In the case of field assisted electron emission, it is observed that Eturn-ON increases and J decreases. The changes are attributed to the changes in the sp3/sp2 ratio of the films due to boron and phosphorous incorporation. The effect of boron on ta-C is to give a p-type effect whereas the effect of phosphorous gives n-type doping effect.  相似文献   

7.
椭偏法表征四面体非晶碳薄膜的化学键结构   总被引:2,自引:0,他引:2  
李晓伟  周毅  孙丽丽  汪爱英 《光学学报》2012,32(10):1031005-312
采用自主研制的双弯曲磁过滤阴极真空电弧(FCVA)技术,在不同衬底负偏压下制备了四面体非晶碳(ta-C)薄膜。通过分光光度计和椭偏(SE)联用技术精确测量了薄膜厚度,重点采用椭偏法对不同偏压下制备的ta-C薄膜sp3 C键和sp2 C键结构进行了拟合表征,并与X射线光电子能谱(XPS)和拉曼光谱的实验结果相对比,分析了非晶碳结构的椭偏拟合新方法可靠性。结果表明,在-100V偏压时薄膜厚度最小,为33.9nm;随着偏压的增加,薄膜中的sp2 C含量增加,sp3 C含量减小,光学带隙下降。对比结果发现,椭偏法作为一种无损、简易、快速的表征方法,可用于ta-C薄膜中sp2 C键和sp3 C键含量的准确测定,且在采用玻璃碳代表纯sp2 C的光学常数及拟合波长选取250~1700nm时的椭偏拟合条件下,拟合数值最佳。  相似文献   

8.
In this study, a series of graded multilayer ta-C films were investigated by varying their sublayer thickness ratios, in which each film sublayer was prepared at different substrate bias by filtered cathode vacuum arc (FCVA) method. The experimental results show that the graded multilayer film structure can effectively decrease the internal stress level of deposited ta-C film, and meanwhile the graded multilayer ta-C films still have high sp3 fractions. The applied substrate bias voltage and sublayer thickness ratio can apparently influence the microstructure characteristics and internal stress of the graded multilayer ta-C films. The graded multilayer ta-C film has larger sp3 fraction when applying a larger negative substrate bias voltage and having a thicker outer sublayer during the film deposition process. However, the internal stress in the as-deposited film also increases with larger thickness of the outer sublayer, and the optimal ratio of sublayer thicknesses is 1:1:1:1 for graded ta-C film with four sublayers.  相似文献   

9.
The effect of substrate bias on X-ray photoelectron spectroscopy (XPS) study of nitrogen incorporated amorphous carbon (a-C:N) films embedded with nanoparticles deposited by filtered cathodic jet carbon arc technique is discussed. High resolution transmission electron microscope exhibited initially the amorphous structure but on closer examination the film was constituted of amorphous phase with the nanoparticle embedded in the amorphous matrix. X-ray diffraction study reveals dominantly an amorphous nature of the film. A straight forward method of deconvolution of XPS spectra has been used to evaluate the sp3 and sp2 contents present in these a-C:N films. The carbon (C 1s) peaks have been deconvoluted into four different peaks and nitrogen (N 1s) peaks have been deconvoluted into three different peaks which attribute to different bonding state between C, N and O. The full width at half maxima (FWHM) of C 1s peak, sp3 content and sp3/sp2 ratio of a-C:N films increase up to −150 V substrate bias and beyond −150 V substrate bias these parameters are found to decrease. Thus, the parameters evaluated are found to be dependent on the substrate bias which peaks at −150 V substrate bias.  相似文献   

10.
The effect of nitrogen addition and laser fluence on the atomic structure of amorphous carbon films (a-C) synthesized by femtosecond pulsed laser deposition has been studied. The chemical bonding in the films was investigated by means of X-ray photoelectron (XPS) and Raman spectroscopies. XPS studies revealed a decrease in the sp3 bonded carbon sites and an associated increase in the N-sp2C bonding sites with increasing nitrogen content in the CNx films. An increase in laser fluence from 0.36 to 1.7 J/cm2 led to a rise in sp3C sites. These results were further confirmed by Raman spectroscopy. The ID/IG ratio increased monotonically and G line-width decreased with the increase of nitrogen content in the films indicating a rise in either the number or the size of the sp2 clusters. Furthermore a visible excitation wavelength dependence study established the resonant Raman process in a-C and CNx films. PACS 81.05.Uw; 81.15.Fg; 82.80  相似文献   

11.
Tetrahedral amorphous carbon films have been produced by pulsed laser deposition, at a wavelength of 248 nm, ablating highly oriented pyrolytic graphite at room temperature, in a 10-2 Pa vacuum, at fluences ranging between 0.5 and 35 Jcm-2. Both (100) Si wafers and wafers covered with a SiC polycrystalline interlayer were used as substrates. Film structure was investigated by Raman spectroscopy at different excitation wavelength from 633 nm to 229 nm and by transmission Electron Energy Loss Spectroscopy. The films, which are hydrogen-free, as shown by Fourier Transform Infrared Spectroscopy, undergo a transition from mainly disordered graphitic to up to 80% tetrahedral amorphous carbon (ta-C) above a threshold laser fluence of 5 J cm-2. By X-ray reflectivity roughness, density and cross-sectional layering of selected samples were studied. Film hardness as high as 70 GPa was obtained by nanoindentation on films deposited with the SiC interlayer. By scratch test film adhesion and friction coefficients between 0.06 and 0.11 were measured. By profilometry we obtained residual stress values not higher than 2 GPa in as-deposited 80% sp3 ta-C films. Received 25 June 2001  相似文献   

12.
DLC (Diamond-like carbon films) were prepared by pulsed laser ablation of a liquid target at substrate temperatures from 18 to 600°C using 248 nm KrF excimer laser. The sp3 hybridization state carbon formation was additionally promoted by gaseous H2O2 flow through the reaction chamber and substrate excitation by the same laser beam. Deposited DLC films were characterised by Raman scattering spectroscopy and atomic force microscopy (AFM). Comparative AFM and Raman study shows that the increase in the content of sp3 type bonding in DLC is in correlation with the increase of the surface roughness of the samples prepared.  相似文献   

13.
Carbon nitride thin films deposited by dc unbalanced magnetron sputtering have been analyzed by high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The XPS data show that N 1s binding states depend on substrate temperature (Ts). By comparison with the Raman spectra, N 1s binding states are assigned in which nitrogen atoms are mainly bound to sp2 and sp3 carbon atoms at Ts = 100°C, whereas at Ts = 500°C nitrogen atoms are mainly bonded to sp2, sp3 and sp1 carbon atoms.  相似文献   

14.
Tetrahedral amorphous carbon (ta-C) films deposited using a filtered cathodic vacuum arc (FCVA) system, have high intrinsic stress which limits their application as protective coatings. To reduce the film stress and to improve the adhesion, a multilayer structure is deposited at a gradient substrate negative bias from 1500 V to 80 V. This paper investigates the stress, microstructure and nano-mechanical properties of graded multilayer ta-C film on Si substrates. Compared with that of single-layer films deposited at optimised bias, the graded multilayer film has low stress without a decline in hardness and Young’s modulus. Microstructural evaluation of the multilayer film using visible Raman spectra shows that the average content of the sp3 bonds of the multilayer film remain at a high level. Nanoscratch testing illustrates favorable scratch resistance and good adhesion of the multilayer film. Scanning electron microscope (SEM) observation confirms the collapse of the film surface along the scratching trace. Finally, deposition on single crystal germanium substrates of a durable coating ∼ 1100 nm thick, and composed of three graded multilayer films is demonstrated. PACS 81.05.Uw; 81.15.Jj; 68.65.Ac; 68.55.Nq; 68.60.Bs  相似文献   

15.
A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor “camphor” and deposition of carbon films on alumina substrate at higher temperatures (600-900 °C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp2-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.  相似文献   

16.
Tetrahedral amorphous carbon films (ta-C) and nitrogen-containing ta-C films have been prepared using a magnetic-filtered plasma-deposition method in pure Ar, and Ar with N2 ambient, respectively. The structural and optical properties of these films have been studied using UV-visible optical absorption spectroscopy, Raman spectroscopy, and measurements of electrical conductivity in the temperature range from 300 to 500 K. The value of the optical band gap for the ta-C films deposited at suitable conditions were found to be larger than 3 eV. For nitrogen-containing ta-C films deposited at low partial pressure of nitrogen, the incorporation of a small amount of nitrogen will result in a slight drop in activation energy of conductivity and a decrease in band gap, which indicates that there are evidently both doping effect of nitrogen and graphitization of bonding. The study of surface morphology has been performed using atomic force microscopy (AFM), and results show that the surface roughness increases with the amount of nitrogen incorporated in ta-C films. The correlation between surface roughness and configuration of N atoms in ta-C network is also discussed.  相似文献   

17.
李红凯  林国强  董闯 《物理学报》2008,57(10):6636-6642
用脉冲偏压电弧离子镀通过控制不同的氮流量在(100)单晶Si基片上制备了不同成分的CNx薄膜.用光学显微镜,XPS,XRD,激光Raman和Nanoindenter等方法研究了薄膜的形貌、成分、结构和性能.结果表明,薄膜表面平整致密、氮含量随着氮流量的降低而降低、结构为非晶且为类金刚石薄膜;随着氮含量从18.9%降低到5.3%(摩尔百分比,全文同),薄膜的硬度和弹性模量单调增加而且增幅较大,其中硬度从15.0 GPa成倍增加到30.0 GPa;通过氮流量的调整能够敏感地改变薄膜中的sp3键的含量,是CNx薄膜的硬度和弹性模量获得大幅度调整的本质原因. 关键词x薄膜')" href="#">CNx薄膜 脉冲偏压 电弧离子镀 硬度  相似文献   

18.
Diamond-like-carbon (DLC) films have been deposited on Si, aluminum and indium tin oxide-coated glass from several organic solvents with pulse-modulated power. The films are characterized by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. XPS spectra show that the main composition of the films is carbon and Raman spectra show that the films are typical DLC films and a high potential is preferable in the formation of sp 3-structure carbon. Comparing the results from different solvents and different substrates we deduce that the methyl group of the solvents has a critical function in forming the DLC films. However, the formation process and the characters of the films, such as appearance, resistivity and thickness, are mainly determined by the substrate. We may call this deposition a substrate-controlled reaction. Received: 31 May 2000 / Accepted: 9 January 2001 / Published online: 3 April 2001  相似文献   

19.
Experimental data are presented from studies of the structure and bond type of carbon atoms in amorphous carbon-nickel films deposited from pulsed vacuum-arc discharge plasma sources. X-ray photoelectron spectroscopy was used. The characteristics of the plasmon loss spectra depend significantly on the deposition parameters. Carbon exists in a mixed sp2+sp3 hybridized state in the carbon–nickel films. The ratio of sp3/sp2 carbon bonds increases when the nickel content is reduced (from 5.5 to 1.0 atomic %) and the deposition angle is increased. The structure closest to that of diamond was with a substrate bias voltage of –80 to –100 V and a deposition angle of 90°.  相似文献   

20.
Polymeric like carbon (PLC) films are grown by a capacitance coupled RF-PECVD on the grounded electrode at room temperature from liquid gas (40% propane and 60% butane) in two regimes with nitrogen and without nitrogen gas. Films are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Fourier transform infrared (FTIR) absorption and Raman spectroscopy. The result of FTIR analyses indicates that more than 90% of hydrogen atoms are bonded to carbon with sp3 hybridization. The abundance of CH3 is more than that of CH2 and this one is more than that of CH for carbon with sp3 hybridization in these films. The C 1s line of the XPS spectra is deconvoluted to several peaks that are attributed to the CH3, CH2 and CH terminations. The result of this deconvolution is consistent with FTIR results. AFM images show that the mean nanoparticle size is reduced from about 100 nm for films without nitrogen to less than 80 nm for films with nitrogen. This is in agreement with our Raman results. By addition of nitrogen to the feed gas, no variation in the C-H stretching vibration mode is observed. The effect of N-H bonds is observable in both FTIR and XPS spectra and a very small trace of N-C bonds is present only in deconvolution of N 1s line of XPS spectra. These results indicate that by addition of nitrogen to feed gas, internal structure of a-C:H nanoparticles is not changed but particle size is decreased. We suggest that the internal stress reduction due to nitrogen addition in the feed gas for PLC films can be related to decreasing of the a-C:H particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号