首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Laser surface alloying of low carbon steel electroplated with thin (10 μm) Ni using an 850 W CW CO2 laser is reported for the first time. Fe-Ni binary alloys of different concentrations are formed by varying laser traverse speed from 0.5 to 5 m/min. The phase transformation from α to α + γ is discussed as a function of Ni contents. Development of microstructure in the modified zone is analysed in terms of solidification rate and Ni concentration. A three-fold increase in the microhardness of the binary alloy is observed. Formation of homogenous, adherent and crack free surface alloys is reported.  相似文献   

2.
A hydrophobic/super-hydrophilic pattern was prepared on a TiO2 thin film by a new fabrication process. The process consists of five key steps: (1) photocatalytic reduction of Ag+ to Ag (nucleation), (2) electroless Cu deposition, (3) oxidation of Cu to CuO, (4) deposition of a self-assembled monolayer (SAM), and (5) photocatalytic decomposition of selected areas of the SAM. A hydrophobic/super-hydrophilic pattern with 500-μm2 hydrophilic areas was obtained in this process. It is particularly noteworthy that a UV irradiation time of only 1 s was sufficient for the nucleation step in the patterning process.  相似文献   

3.
We report the formation of homogeneous and stable V2O3 nanocrystals, directly from V2O5 thin films, at 600 °C, as observed by using in situ electron microscopy experiments. Thermally-induced reduction of V2O5 thin films in vacuum is remarkably different when compared to reduction of V2O5 single crystals and results in the formation of nanophase V2O3. Thermally grown V2O3 nanocrystals exhibit hexagon or square shape and are stable at higher temperature as well as room temperature. The formation of stable nanocrystals through the reduction process in a non-chemical environment (vacuum) could provide a basis for understanding the complex processes of vanadium oxide phase transitions and for controlling the chemical processes to produce oxide nanocrystals.  相似文献   

4.
This paper describes the effect of the SF6 gas residence time on the morphology of silicon (1 0 0) samples etched in a reactive ion etching system. Profilometry and atomic force microscopy techniques were used to characterize the etching process focusing attention on the evolution of the surface morphology. Under the condition of variable pressure and gas flow rate, the decrease of the residence time leads to an increase of the silicon etch rate concomitantly with an increase of the surface roughness. Contrary fact is observed when the gas flow is fixed and the pressure is varied. Here, the increasing of residence time leads to a constant increase of silicon etch rate with small variations in final surface roughness. To better understanding this resident time effect, mass spectrometry analyses were realized during the discharge for both gas flow conditions.  相似文献   

5.
As-deposited antimony sulfide thin films prepared by chemical bath deposition were treated with nitrogen AC plasma and thermal annealing in nitrogen atmosphere. The as-deposited, plasma treated, and thermally annealed antimony sulfide thin films have been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV-vis spectroscopy, and electrical measurements. The results have shown that post-deposition treatments modify the crystalline structure, the morphology, and the optoelectronic properties of Sb2S3 thin films. X-ray diffraction studies showed that the crystallinity of the films was improved in both cases. Atomic force microscopy studies showed that the change in the film morphology depends on the post-deposition treatment used. Optical emission spectroscopy (OES) analysis revealed the plasma etching on the surface of the film, this fact was corroborated by the energy dispersive X-ray spectroscopy analysis. The optical band gap of the films (Eg) decreased after post-deposition treatments (from 2.36 to 1.75 eV) due to the improvement in the grain sizes. The electrical resistivity of the Sb2S3 thin films decreased from 108 to 106 Ω-cm after plasma treatments.  相似文献   

6.
Selective laser patterning of thin films in a multilayered structure is an emerging technology for process development and fabrication of optoelectronics and microelectronics devices. In this work, femtosecond laser patterning of electrochromic Ta0.1W0.9Ox film coated on ITO glass has been studied to understand the selective removal mechanism and to determine the optimal parameters for patterning process. A 775 nm Ti:sapphire laser with a pulse duration of 150 fs operating at 1 kHz was used to irradiate the thin film stacks with variations in process parameters such as laser fluence, feedrate and numerical aperture of objective lens. The surface morphologies of the laser irradiated regions have been examined using a scanning electron microscopy and an optical surface profiler. Morphological analysis indicates that the mechanism responsible for the removal of Ta0.1W0.9Ox thin films from the ITO glass is a combination of blistering and explosive fracture induced by abrupt thermal expansion. Although the pattern quality is divided into partial removal, complete removal, and ITO film damage, the ITO film surface is slightly melted even at the complete removal condition. Optimal process window, which results in complete removal of Ta0.1W0.9Ox thin film without ablation damage in the ITO layer, have been established. From this study, it is found that focusing lens with longer focal length is preferable for damage-free pattern generation and shorter machining time.  相似文献   

7.
Er-Tm-codoped Al2O3 thin films with different Tm to Er concentration ratios were synthesized by cosputtering from separated Er, Tm, Si, and Al2O3 targets. The temperature dependence of photoluminescence (PL) spectra was studied. A flat and broad emission band was achieved in the 1.4-1.7 μm and the observed 1470, 1533 and 1800 nm emission bands were attributed to the transitions of Tm3+: 3H4 → 3F4, Er3+: 4I13/2 → 4I15/2 and Tm3+: 3F4 → 3H6, respectively. The temperature dependence is rather complicated. With increasing measuring temperature, the peak intensity related to Er3+ ions increases by a factor of five, while the Tm3+ PL intensity at 1800 nm decreases by one order of magnitude. This phenomenon is attributed to a complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and increase of phonon-assisted ET rate with temperature as well. It should be helpful to fully understand ET processes between Er and Tm and achieve flat and broad emission band at different operating temperatures.  相似文献   

8.
Scalable Sb(III)Sb(V)O4 nanorods from Sb2O5 powder were prepared using solvothermal route. XRD and HRTEM demonstrate that the nanorods are single-crystal orthorhombic-Sb2O4 phase with several micrometers long and 200-300 nm diameter size. XPS result further shows that the antimony cations in the nanorods are composed of three valence and five valence antimony ions. The emission of the nanorods appears around 450 nm wavelength. The formation mechanism of the Sb(III)Sb(V)O4 nanorods was discussed in detail.  相似文献   

9.
Sapphire is a desired material for infrared-transmitting windows and domes because of its excellent optical and mechanical properties. However, its thermal shock resistance is limited by loss of compressive strength along the c-axis of the crystal with increasing temperature. In this paper, double layer films of SiO2/Si3N4 were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and high temperature mechanical performance of infrared windows of sapphire. Composition and structure of each layer of the films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. Surface morphology and roughness of coated and uncoated sapphire have been measured using a talysurf. Flexural strengths of sapphire sample uncoated and coated with SiO2/Si3N4 have been studied by 3-point bending tests at different temperatures. The results show that SiO2/Si3N4 films can improve the surface morphology and reduce the surface roughness of sapphire substrate. In addition, the designed SiO2/Si3N4 films can increase the transmission of sapphire in mid-wave infrared and strengthen sapphire at high temperatures. Results for 3-point bending tests indicated that the SiO2/Si3N4 films increased the flexural strength of c-axis sapphire by a factor of about 1.4 at 800 °C.  相似文献   

10.
Organic-inorganic composite SiO2-Al2O3 films have been prepared by sol-gel using methacryloxypropyl trimethoxysilane and aluminum sec-butoxide as the precursors. By introduction of organic groups into the inorganic backbone, the smooth and crack-free films could be readily achieved by a one-step dip-coating process, with the thickness up to 4.6 μm after being post-baked at 200 °C for 2 h. The films presented in an amorphous phase with an acceptable chemical homogeneity. Owing to the formation of chelate rings, the gel films showed a strong photosensitivity to ultraviolet light at 325 nm. The uniform fine patterns of SiO2-Al2O3 thick films could be well defined by ultraviolet light imprinting simply using a mask. These performances of SiO2-Al2O3 films indicate the potential for integrated optical systems.  相似文献   

11.
The surface roughness of the semiconductor substrate substantially influences properties of the whole semiconductor/oxide structure. SiO2/Si structures were prepared by using low temperature nitric acid oxidation of silicon (NAOS) method and then the whole structure was passivated by the cyanidization procedure. The influence of the surface morphology of the silicon substrate onto the electrical properties of ultrathin NAOS SiO2 layer was investigated. Surface height function properties were studied by the AFM method and electrical properties were studied by the STM method. The complexity of analyzed surface structure was sensitive to the oxidation and passivation steps. For describing changes in the oxide layer structure, several fractal measures in an analysis of the STM images were used. This fractal geometry approach enables quantifying the fine spatial changes in the tunneling current spectra.  相似文献   

12.
SiO2 films have been prepared on sapphire by radio frequency magnetron reactive sputtering in order to increase the optical and mechanical properties of infrared windows and domes of sapphire at elevated temperatures. Infrared transmission and flexural strength of uncoated and coated sapphires have been investigated at different temperatures. SiO2 films were shown to have apparent antireflective effect on sapphire substrate at room temperature. With increasing temperature, the coated sapphires have larger average transmission than the uncoated ones. The temperature was proven to only weakly affect the absorption coefficient and antireflection capability of the deposited films. It is also indicated that the flexural strengths of the c-axis sapphire samples coated with SiO2 films are increased by 1.2 and 1.5 times than those of uncoated at 600 and 800 °C, respectively.  相似文献   

13.
Vanadium dioxide shows a passive and reversible change from a monoclinic insulator phase to a metallic tetragonal rutile structure when the sample temperature is close to and over 68 °C. As a kind of functional material, VO2 thin films deposited on fused quartz substrates were successfully prepared by the pulsed laser deposition (PLD) technique. With laser illumination at 400 nm on the obtained films, the phase transition (PT) occurred. The observed light-induced PT was as fast as the laser pulse duration of 100 fs. Using a femtosecond laser system, the relaxation processes in VO2 were studied by optical pump-probe spectroscopy. Upon a laser excitation an instantaneous response in the transient reflectivity and transmission was observed followed by a relatively longer relaxation process. The alteration is dependent on pump power. The change in reflectance reached a maximum value at a pump pulse energy between 7 and 14 mJ/cm2. The observed PT is associated with the optical interband transition in VO2 thin film. It suggests that with a pump laser illuminating on the film, excitation from the dθ,? - state of valence band to the unoccupied excited mixed dθ,?-π* - state of the conduction band in the insulator phase occurs, followed by a resonant transition to an unoccupied excited mixed dθ,?-π* - state of the metallic phase band.  相似文献   

14.
TiO2 films deposited on unheated substrates of alumina silicate glass by rf. (13.56 MHz) magnetron sputtering in the mixture of O2 and Ar gases have been studied with X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and optical spectroscopy. Structural and optical properties of TiO2 films deposited at different O2 concentrations and total pressures have been analyzed. Photocatalytic properties of TiO2 films were characterized by following the degradation of methylene blue molecules under UV irradiation. It was found that the rate of methylene blue decomposition strongly depends on morphology and crystallinity of the deposited films, namely on the content of the anatase phase and on the size of the anatase grains. The best photocatalytic activity was found on TiO2 films consisting of pure anatase phase with the size of grains of about 450 Å. With the help of those films a thin film reactor for water purification has been designed and tested.  相似文献   

15.
The Gd doped ceria (CGO) in thin layers is of great interest for low temperature operation. In the present investigation, we report on the use of spray pyrolysis technique for the synthesis of CGO thin films. The process parameters were optimized for synthesizing Gd0.1Ce0.9O1.95 films. Films were characterized by XRD, EDS, SEM, and AFM and are observed to be phase pure and dense with surface roughness of the order of ∼5 nm. The d.c. conductivity was also measured and is observed to be ∼0.5 S/cm at 623 K.  相似文献   

16.
The mesoporous Nb2O5 photocatalysts were synthesized via an evaporation-induced self-assembly (EISA) method. The mesoporous structure of the as-made samples was studied by small-angle X-ray diffraction, N2 adsorption-desorption isothermal and transmission electron microscopy. The increase of the calcination temperature during the synthesis resulted in enhanced crystallization, but decreased mesoporosity of the samples. The later was found to have a crucial influence on the photocatalytic activity by bringing on decreased BET surface area and especially increscent pore wall thickness. The advantage of the mesoporous Nb2O5 was also proved by performing 20 times higher photocatalytic activity than a bulk Nb2O5 without any porosity. A model was given to describe the effect of mesoporosity on the transportation and recombination of carriers.  相似文献   

17.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   

18.
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 content have been prepared on BK7 substrates by electron-beam evaporation method. Structural properties and surface morphology of thin films were investigated by X-ray diffraction (XRD) spectra and scanning probe microscope. Laser induced damage threshold (LIDT) was determined. It was found that crystalline phase and microstructure of YSZ thin films was dependent on Y2O3 molar content. YSZ thin films changed from monoclinic phase to high temperature phase (tetragonal and cubic) with the increase of Y2O3 content. The LIDT of stabilized thin film is more than that of unstabilized thin films. The reason is that ZrO2 material undergoes phase transition during the course of e-beam evaporation resulting in more numbers of defects compared to that of YSZ thin films. These defects act as absorptive center and the original breakdown points.  相似文献   

19.
Growth of Ru- and RuO2-composite (ROC) nanodots on atomic-layer-deposited Al2O3 film has been studied for the first time using ion-beam sputtering followed by post-deposition annealing (PDA). X-ray photoelectron spectroscopy analyses reveal that RuO2 and Ru co-exist before annealing, and around 10% RuO2 is reduced to metallic Ru after PDA at 900 °C for 15 s. Scanning electron microscopy measurements show that well-defined spherical ROC nanodots are not formed till the PDA temperature is raised to 900 °C. The mean diameter of the nanodots enlarges with increasing PDA temperature whereas the nanodot density decreases, which is attributed to coalescence process between adjacent nanodots. It is further illustrated that the resulting nanodot size and density are weakly dependent on the annealing time, but are markedly influenced by the decomposition of RuO2. In this article, the ROC nanodots with a high density of 1.6 × 1011 cm−2, a mean diameter of 20 nm with a standard deviation of 3.0 nm have been achieved for the PDA at 900 °C for 15 s, which is promising for flash memory application.  相似文献   

20.
Surface effects during plasma activation of poly(p-phenilene sulphide)—PPS have been studied. Samples that were exposed to weakly ionized highly dissociated oxygen plasma created an inductively coupled radiofrequency discharge with the power of 100 W. The electron density and temperature were measured with a double Langmuir probe and were 4 × 1015 m−3 and 3 eV, respectively, while the neutral atom density was measured with a fiber optics catalytic probe and was 4 × 1021 m−3. The surface tension was determined by measuring the contact angle of deionized water, while the appearance of surface functional groups was detected by XPS. The surface tension of untreated PPS was 7 × 10−3 N/m or/and increased to 7 × 10−2 N/m in few seconds of plasma treatment. It remained fairly constant for longer plasma treatments. The XPS survey spectrum showed little oxygen on untreated samples, but its concentration increased to about 20 at.% in few seconds. Detailed high resolution XPS C 1s peak showed that the carbon was left fairly stable during plasma treatment. The main functional groups formed were rather sulphate in sulphite groups, as determined from high resolution S 2p peak. Namely, a strong transition from sulphide to sulphate state of sulfur was observed. The spontaneous deactivation of the polymer surface was measured as well. The deactivation was fairly logarithmic with the characteristic decay time of several hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号