首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-photon polymerisation is an established technique for the fabrication of three-dimensional microstructures. To date structures have mostly been developed using single beam serial writing. A novel approach to simultaneous multi-spot two-photon polymerisation, that uses a SiO2 on glass Fraunhofer diffractive optical element to generate an array of beamlets, is described. A Ti:sapphire laser, with wavelength 790 nm, 80 MHz repetition rate, 100 fs pulse duration and an average power of 25 mW, was used to initiate two-photon polymerisation. The DOE, in combination with a high power microscope objective, efficiently transforms the laser beam into a linear array of four spots of equal intensity. The fabrication of a periodic transmission grating, using parallel processing with these four spots, is shown. The grating was written in a Zr-loaded resin prepared on a glass substrate using dip coating deposition of a Zr/PMMA hybrid prepared by the sol-gel method. The operation of the diffractive element and the performance of the diffraction grating are also discussed.  相似文献   

2.
The fabrication of microstructures by two-photon polymerization has been widely reported as a means of directly writing three-dimensional nanoscale structures. In the majority of cases a single point serial writing technique is used to form a polymer model. Single layer writing can also be used to fabricate two-dimensional patterns and we report an extension of this capability by using two-photon polymerization to form a template that can be used as a sacrificial layer for a novel lift-off process.A Ti:sapphire laser, with wavelength 795 nm, 80 MHz repetition rate, 100 fs pulse duration and an average power of 700 mW, was used to write 2D grid patterns with pitches of 0.8 and 1.0 μm in a urethane acrylate resin that was spun on to a lift-off base layer. This was overcoated with gold and the grid lifted away to leave an array of gold islands.The optical transmission properties of the gold arrays were measured and found to be in agreement with a rigorous coupled-wave analysis simulation.  相似文献   

3.
Fs laser-based two-photon polymerisation (2PP) has been widely reported as a means of directly writing three-dimensional nanoscale structures. Usually the voxel of a high numerical aperture microscope objective is scanned through the resin to build up the required model. In the case of high aspect ratio two-dimensional structures, such as cell scaffolds, repeated scanning is required to build up the height.The voxel shape can be substantially elongated by the inclusion of an axicon lens in the laser beam line. In this report we describe the use of a Bessel beam produced in the region beyond the focus of an objective lens when the beam has been modified in this way.A Ti:sapphire laser was used to write a range of 2D square cell structures in a Zr-loaded sol-gel system. The process was characterised, in terms of the dimensions of the polymerised Bessel region, for different processing conditions. Examples of the structures are also described.  相似文献   

4.
A novel hybrid organic-inorganic photocurable sol-gel material based on tantalum ethoxide and 3-trimethoxysilylpropylmethacrylate has been developed, characterised and used in the fabrication of optical waveguides and three-dimensional woodpile structures employing the single and two-photon polymerisation techniques, respectively. Single mode waveguides operating at 1310 and 1550 nm have been fabricated, optically characterised and their performances correlated to the material formulation. Three-dimensional woodpile structures exhibiting negligible shrinkage have been developed and their remarkable mechanical stability correlated to the molecular structure of the hybrid material. The overall fabrication process of these devices is described and it is shown that the refractive indices of the materials can be tailored by a precise control of the material composition allowing the successful fabrication of performing single mode waveguides.  相似文献   

5.
Two-photon polymerisation of photo-sensitive materials allows the fabrication of three dimensional micro- and nano-structures for photonic, electronic and micro-system applications. However the usable process window and the applicability of this fabrication technique is significantly determined by the properties of the photo-sensitive material employed. In this study investigation of a custom inorganic-organic hybrid system, cross-linked by a two-photon induced process, is described. The material was produced by sol-gel synthesis using a silicon alkoxide species that also possessed methacrylate functionality. Stabilized zirconium alkoxide precursors were added to the precursor solution in order to reduce drying times and impart enhanced mechanical stability to deposited films. This enabled dry films to be used in the polymerisation process. A structural, optical and mechanical analysis of the optimised sol-gel material is presented. A Ti:sapphire laser with 80 MHz repetition rate, 100 fs pulse duration and 795 nm is used. The influence of both material system and laser processing parameters including: laser power, photo-initiator concentration and zirconium loading, on achievable micro-structure and size is presented.  相似文献   

6.
We propose a method to produce diffraction-free thin and hollow beams. The method is based on Laguerre-Gaussian (LG) beams incident on a large open-angle axicon. We use the vector diffraction integrals and stationary phase method to deduce a simple and analytical formula of the propagating field of the linearly polarized LG beams through an axicon. The numerical results show that the hollow beams of whose diameter is in the order of the wavelength can be obtained by using the axicon with the refractive index n = 2 and the open angle α = 25°. These diffraction-free thin and hollow beams may be very useful to accurately trap and manipulate atoms. However, when the open angle is over large, the conversion efficiency from the LG beam to the diffraction-free hollow beam will decrease obviously.  相似文献   

7.
Holographic recording using two-photon-induced photopolymerization   总被引:1,自引:0,他引:1  
Molecular excitation via the simultaneous absorption of two photons can lead to improved three-dimensional control of photochemical or photophysical processes due to the quadratic dependence of the absorption probability on the incident radiation intensity. This has lead to the development of improved three-dimensional fluorescence imaging, optical data storage, and microfabrication. The latter of these involves the fabrication of three-dimensional structures using a spatial variation in the incident intensity within a photopolymerizable resin. In the past, the translation of the focal plane of a tightly focused laser beam was used to induce localized photopolymerization and fabrication of three-dimensional structures. Here we report the first successful demonstration of large-area patterning via ultrafast holography-based two-photon polymerization of a commercially available optical resin and a large two-photon cross-section dye (AF380). This opens tremendous possibilities for the wide-spread use of two-photon absorption for the three-dimensional control of photoinduced processes. Received: 21 June 1999 / Accepted: 23 June 1999 / Published online: 8 September 1999  相似文献   

8.
We report on non-lithographic laser direct writing fabrication of optical waveguides by using a 4′-hydroxy-4-nitroazobene dye-functionalized polymer film. The polymer film reveals permanent change of refractive index at high laser illumination intensity. A focused continuous wave low power green laser beam at 532 nm wavelength is used to directly write waveguide structures on the polymer film. The magnitude of refractive index increase at film surface is about 0.006. One-step laser writing results in graded index waveguides in film depth direction under ambient conditions without pre- and post-processing. As a by-product, the laser writing also results in a very small air valley at the boundary between the laser written and non-written regions which may contribute in part although minimal to the waveguide lateral confinement and can be used for visual observation of waveguide patterns. The fabricated waveguide is found to be stable and easily reproducible.  相似文献   

9.
Direct laser writing by two-photon polymerization of photosensitive materials has emerged as a very promising technique for rapid and flexible fabrication of photonic crystals. In this work, a photosensitive silica sol-gel containing the nonlinear optical chromophore Disperse Red 1 is synthesized, and the two-photon polymerization technique is employed to fabricate three-dimensional photonic crystals with stop-gaps in the near-infrared. The composite material exhibits minimal shrinkage during photopolymerization, eliminating the need for shrinkage compensation or the fabrication of support structures.  相似文献   

10.
The modes of laser lithography fabrication of three-dimensional submicrometer structures have been studied. The method is based on the effect of threshold two-photon polymerization of a photosensitive material at the laser beam focus. To determine the lithograph workspace in the coordinates “laser power-speed of the sample displacement with respect to the laser focus,” a series of photonic crystals with the woodpile structure is prepared. Two methods for fabricating three-dimensional structures, i.e., raster scanning and vector graphics (or the vector method) are analyzed in detail. The advantages of the vector method for fabricating periodic structures are demonstrated using crystals of inverted yablonovite as an example. The prepared samples are studied by scanning electron microscopy.  相似文献   

11.
We propose a new method for transformation of a Laguerre-Gaussian beam of azimuthal index l and radial index n = 0 (LGl,0) into a vortex, diverging or nondiverging Bessel beam, which can have increased or decreased phase singularity order, or into a zeroth order Bessel beam, by means of a helical axicon. The Bessel beam divergence or nondivergence depends upon the waist position of the input Laguerre-Gaussian beam, regarding the plane where the helical axicon is situated.The expressions for the amplitude and the intensity distribution of the diffracted wave field, in the process of Fresnel diffraction, are deduced using the stationary phase method. The theoretical analysis for the vortex radius and the maximum propagation distance of the Bessel beams obtained is presented.  相似文献   

12.
We propose a new design for fabrication of a highly power-efficient double axicon to generate self-imaged three-dimensional intensity voids along the propagation of a beam. The conventional conical structure of an axicon is modified and shaped like an axiconlike structure with a double-gradient surface profile. The gradient conical surfaces generate Bessel beams with varying radial wave vectors that are superimposed and interfere to generate a sequence of three-dimensional intensity voids. The proposed element was fabricated using electron-beam lithography, and experimental verification of the design is reported.  相似文献   

13.
In the presented work, two-photon 3D lithography and selective single-photon photopolymerization in a prefabricated polydimethylsiloxane matrix is presented as an approach with potential applicability of waveguide writing in 3D by two-photon polymerization.Photopolymers based on acrylate chemistry were used in order to evaluate the optical capabilities of the available two-photon system. Several photoinitiators, tailored for two-photon absorption, were tested in a mixture of trimethylolpropane triacrylate and ethoxylated trimethylolpropane triacrylate. Best results were obtained with a recently synthesized diynone-based photoinitiator. Feature resolutions in the range of 300 nm were achieved. Due to the cross-conjugated nature of that donor-π-acceptor-π-donor system a high two-photon absorption activity was achieved. Therefore, a resin mixture containing only 0.025 wt% of photoinitiator was practical for structuring by two-photon polymerization. The required initiator content was therefore a factor of 100 lower than in traditional one-photon lithography.The aim of the second part of this work was to fabricate optical waveguides by selectively irradiating a polymer network, which was swollen by a monomer. The monomer was polymerized by conventional single-photon polymerization and the uncured monomer was removed by evaporation at elevated temperatures. This treatment leads to a local change in refractive index. Refractive index changes in the range of Δn = 0.01 (Δn/n = 0.7%) were achieved, which is sufficient for structuring waveguides for optoelectronic applications.  相似文献   

14.
Micro-ablation of crystalline silicon was performed by irradiating a silicon substrate with femtosecond laser pulses of wavelengths 786 nm or 393 nm focused using a conical axicon assisted with a convex lens. Focusing the laser beam close to the tip of the axicon by means of the lens significantly improved the efficiency of concentration of laser pulse energy at the central spot of the resulting Bessel-Gaussian intensity distribution. As a result, micron-sized holes were formed with the diameter determined by the ablation threshold in the calculated fluence profile. It is possible to predict hole size from the laser pulse energy and the wavelength. Crystalline particles, a few tens of nanometers in size, were formed near the ablated zone.  相似文献   

15.
Three-dimensional (3-D) structures are used in many applications, including the fabrication of opto-electronic and bio-MEMS devices. Among the various fabrication techniques available for 3-D structures, nano imprint lithography (NIL) is preferred for producing nanoscale 3-D patterns because of its simplicity, relatively short processing time, and high manufacturing precision. For efficient replication in NIL, a precise 3-D stamp must be used as an imprinting tool. Hence, we attempted the fabrication of original 3-D master molds by low-voltage electron beam lithography (EBL). We then fabricated polydimethylsiloxane (PDMS) stamps from the original 3-D mold via replica molding with ultrasonic vibration.First, we experimentally analyzed the characteristics of low-voltage EBL in terms of various parameters such as resist thickness, acceleration voltage, aperture size, and baking temperature. From these e-beam exposure experiments, we found that the exposure depth and width were almost saturated at 3 kV or lesser, even when the electron dosage was increased. This allowed for the fabrication of various stepped 3-D nanostructures at a low voltage. In addition, by using line-dose EBL, V-groove patterns could be fabricated on a cured electron resist (ER) at a low voltage and low baking temperature. Finally, the depth variation could be controlled to within 10 nm through superposition exposure at 1 kV. From these results, we determined the optimum electron beam exposure conditions for the fabrication of various 3-D structures on ERs by low-voltage EBL. We then fabricated PDMS stamps via the replica molding process.  相似文献   

16.
Sub-micron ring, pillar and wall structures were written by two-photon polymerisation of a sol-gel resin using a femtosecond laser beam which was shaped using internal conical diffraction. The ring structure was written using a demagnified image of the ring-shaped beam which arises in conical diffraction of a narrow light beam. The pillar and wall structures were produced by imaging the Bessel beam formed by conical diffraction in combination with a converging lens.  相似文献   

17.
In the present work, we have analyzed the use of elliptical beam shaping along with low numerical aperture focusing optics in order to produce circular cross-section waveguides in different materials at large processing depths by direct femtosecond laser writing (100 fs, 800 nm, 1 kHz). A variable slit located before the focusing optics allows to generate a nearly elliptical beam shape and also to reduce the effective numerical aperture of the beam along the shat axis of the ellipse. The focusing optics allows to focus the beam deep inside the sample, which is translated at a constant speed transversely to the writing beam direction. The influence of several experimental parameters (energy per pulse, slit width, processing depth) on the properties of the produced waveguides has been analyzed. The influence of the intrinsic properties of the material (refractive index, composition) has been analyzed by comparing results obtained in fused silica and Er:Yb co-doped phosphate glass. The results obtained show that this approach leads to the successful production of deep subsurface (up to 7 mm) waveguides with circular cross-sections. Preliminary results using chirped pulses in the phosphate glass suggest that temporal pulse shaping can be used as an additional parameter to optimize the guided mode symmetry.  相似文献   

18.
We report on new schemes for pump-probe photo-thermal lens methods aimed for measuring the two-photon absorption coefficient of a given material. We show that by focusing a probe beam in the presence of a nearly collimated pump beam, we create a thermal lens which yields measurement of the two-photon absorption coefficient of nitrobenzene of (3.9 ± 0.3) 10−10 cm/W at 532 nm. We also show that when the pump field is focused in the presence of a nearly collimated probe beam the width of the z-scan signature of a two-photon absorption process is nearly one order of magnitude smaller than that of a one-photon process. We show experimental evidence of the effect obtained for nitrobenzene.  相似文献   

19.
We demonstrate the fabrication of fiber Bragg gratings using a novel high-repetition rate nanosecond Q-switched Nd:VO4 laser fifth harmonic (213 nm) source for the first time in boron and hydrogen-free, Ge doped fiber. Strong gratings are rapidly obtained with the phase mask technique in hydrogen-free B/Ge doped photosensitive fiber with relatively low average power (100 mW), as well as in standard Corning SMF28 fiber. The evolution of the refractive index change during UV-exposure is presented. Photosensitivity of fibers to the 213 nm light is compared to the fourth harmonic (266 nm) light, as well as picosecond 213 nm radiation and is shown to be significantly higher than both. We believe that the photosensitivity of SMF28 fiber is due to a single-photon rather than two-photon absorption process.  相似文献   

20.
We report the generation of femtosecond Bessel beams of conical half-angle 26 degrees using an axicon lens and a beam reduction imaging setup. The generated Bessel beams were applied to the micromachining of nanostructures in glass of length up to 100 μm. The effect of the incident pulse energy on the characteristics of the nano- structures was studied using optical microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号